導航:首頁 > 源碼編譯 > 推薦演算法模塊是幹啥的

推薦演算法模塊是幹啥的

發布時間:2024-04-03 00:37:58

㈠ 涓涓瀹屾暣鐨勬帹鑽愮郴緇熼氬父鍖呮嫭鍝3涓緇勬垚妯″潡錛

涓涓瀹屾暣鐨勬帹鑽愮郴緇熼氬父鍖呮嫭鍝3涓緇勬垚妯″潡錛

A.鐢ㄦ埛寤烘ā妯″潡

B.鎺ㄨ崘瀵硅薄寤烘ā妯″潡

C.鎺ㄨ崘綆楁硶妯″潡

D.鍙瑙嗗寲妯″潡

姝g『絳旀堬細鐢ㄦ埛寤烘ā妯″潡錛涙帹鑽愬硅薄寤烘ā妯″潡錛涙帹鑽愮畻娉曟ā鍧

演算法推薦服務是什麼

演算法推薦服務是:在本質上,演算法是「以數學方式或者計算機代碼表達的意見」。其中,推薦系統服務就是一個信息過濾系統,幫助用戶減少因瀏覽大量無效數據而造成的時間、精力浪費。

並且在早期的研究提出了通過信息檢索和過濾的方式來解決這個問題。到了上世紀90年代中期,研究者開始通過預測用戶對推薦的物品、內容或服務的評分,試圖解決信息過載問題。推薦系統由此也作為獨立研究領域出現了。

用演算法推薦技術是指:應用演算法推薦技術,是指利用生成合成類、個性化推送類、排序精選類、檢索過濾類、調度決策類等演算法技術向用戶提供信息。

基於內容的推薦方法:根據項的相關信息(描述信息、標簽等)、用戶相關信息及用戶對項的操作行為(評論、收藏、點贊、觀看、瀏覽、點擊等),來構建推薦演算法模型。

是否推薦演算法服務會導致信息窄化的問題:

推薦技術並不是單純地「投其所好」。在一些專家看來,在推薦已知的用戶感興趣內容基礎上,如果能深入激發、滿足用戶的潛在需求,那麼演算法就能更好地滿足人對信息的多維度訴求。

在外界的印象里,個性化推薦就像漏斗一樣,會將推薦內容與用戶相匹配,傾向於向用戶推薦高度符合其偏好的內容,致使推薦的內容越來越窄化。

但與外界的固有認知相反,《報告》認為在行業實踐中,互聯網應用(特別是位於頭部的大型平台)有追求演算法多樣性的內在動力。

在對行業內代表性應用的數據分析後,《報告》發現,閱讀內容的類型數量是否夠多、所閱讀內容類型的分散程度是否夠高,與用戶是否能長期留存關聯密切,呈正相關。上述兩項指標對用戶長期留存的作用,可以與信息的展現總量、用戶的停留時長、用戶閱讀量等指標的影響相媲美。

㈢ 推薦演算法綜述

推薦系統的目的是通過推薦計算幫助用戶從海量的數據對象中選擇出用戶最有可能感興趣的對象。涉及三個基本內容:目標用戶、待推薦項目以及推薦演算法,基本流程為:描述為用戶模型構建、項目模型建立以及推薦演算法處理三個基本流程;

為了能夠為用戶提供准確的推薦服務,推薦系統需要為用戶構建用戶模型,該模型能夠反映用戶動態變化的多層次興趣偏好,有助於推薦系統更好的理解用戶的特徵和需求。構建用戶模型通常需要經歷三個流程:用戶數據收集,用戶模型表示以及用戶模型更新。

(1)用戶數據收集:用戶數據是用戶模型構建的基礎,用戶數據收集的方式一般有顯示方式獲取和隱式方式獲取兩種。
顯示方式獲取的數據是用戶特徵屬性和興趣偏好的直接反映,所獲得的信息數據是較為客觀全面的,比如用戶在注冊時包含的性別、年齡等信息可以直接表示出用戶的基本人口學信息和興趣信息,用戶對項目的評分可以反映出用戶的偏好。但顯示獲取的方式最大的缺陷是其實時性較差,並且具有很強的侵襲性。
隱式方式獲取用戶數據是在不幹擾用戶的前提下,採集用戶的操作行為數據,並從中挖掘出用戶的興趣偏好。用戶的很多操作行為都能反映出用戶的喜好,比如用戶瀏覽網頁的速度、用戶查詢的關鍵字等,推薦系統在不影響用戶使用系統的情況下,通過行為日誌挖掘出用戶的偏好。隱式獲取方式由於具有較好的實時性和靈活性和較弱的侵襲性,己經成為推薦系統中主要的用戶數據採集方式。

(2)用戶模型表示:用戶模型是從用戶數據中歸納出的推薦系統所理解的用戶興趣偏好的結構化形式。
a 基於內容關鍵詞表示;
b 基於評分矩陣表示;
(3)用戶模型更新:推薦系統面臨的問題之一是興趣漂移,興趣漂移的根本原因在於用戶的興趣會隨時間發生改變。為了使用戶模型夠准確的代表用戶的興趣,推薦系統需要根據最新的用戶數據對用戶模型進行更新。

目前項目模型主要通過基於內容和基於分類這兩類方式來建立。基於內容的方式是以項目本身內容為基礎,向量空間模型表示是目前御用最為廣泛的基於內容的方式。

基於分類的方式是根據項目的內容或者屬性,將項目劃分到一個或者幾個類別中,利用類別信息來表示項目,這種方法可以很方便地將項目推薦給對某一類別感興趣的用戶。常見的分類演算法有樸素貝葉斯演算法和KNN分類演算法等。

推薦系統實現的核心是其使用的推薦演算法。針對不同的使用環境及其系統的數據特徵,選取不同的推薦演算法,可以在本質上提高推薦系統的推薦效果。根據不同的分類標准,推薦演算法出現了有很多不同的分類方法,本文採用了比較普遍的分類方法。

推薦系統通常被分為基於內容的推薦演算法、協同過濾推薦演算法以及混合模型推薦演算法三大類。

基於內容的推薦演算法,其本質是對物品或用戶的內容進行分析建立屬性特徵。系統根據其屬性特徵,為用戶推薦與其感興趣的屬性特徵相似的信息。演算法的主要思想是將與用戶之前感興趣的項目的內容相似的其他項目推薦給用戶。

CBF(Content-based Filter Recommendations)演算法的主要思想是將與用戶之前感興趣的項目的內容相似的其他項目推薦給用戶,比如用戶喜歡Java開發的書籍,則基於內容過濾演算法將用戶尚未看過的其他Java開發方面的書籍推薦給用戶。因此,該推薦演算法的關鍵部分是計算用戶模型和項目模型之間的內容相似度,相似度的計算通常採用餘弦相似性度量。

基於內容的推薦過程一般分為以下三個模塊:
(1)特徵提取模塊:由於大多數物品信息是非結構化的,需要為每個物品(如產品、網頁、新聞、文檔等)抽取出一些特徵屬性,用某一恰當的格式表示,以便下一階段的處理。如將新聞信息表示成關鍵詞向量,此種表示形式將作為下一模塊(屬性特徵學習模塊)的輸入。

(2)特徵學習模塊:通過用戶的歷史行為數據特徵,機器學習出用戶的興趣特徵模型。本模塊負責收集代表用戶喜好的數據信息,並泛化這些數據,用於構建用戶特徵模型。通常使用機器學習的泛化策略,來將用戶喜好表示為興趣模型。

(3)推薦模塊:該模塊利用上一階段得到的用戶特徵模型,通過對比用戶興趣模型與帶推薦物品的特徵相似度,為用戶推薦與其興趣相似度較高的物品,從而達到個性化推薦的目的。該模塊一般採用計算用戶興趣向量與待推薦物品特徵向量的相似度來進行排序,將相似度較高的物品推薦給相應用戶。計算相似度有多種方法,如皮爾遜相關系數法、夾角餘弦法、Jaccard相關系數法等。

協同過濾演算法(Collaborative Filtering)是於內容無關的,即不需要額外獲取分析用戶或物品的內容屬性特徵。是基於用戶歷史行為數據進行推薦的演算法。其通過分析用戶與物品間的聯系來尋找新的用戶與物品間的相關性。

該演算法演算法通常有兩個過程,一個過程是預測,另一個過程是推薦。主流的協同過濾演算法包括三種:基於用戶的協同過濾(User-Based Collaborative Filtering,UBCF)、基於項目的協同過濾(Item-Based Collaborative Filtering, IBCF)和基於模型的協同過濾(Model-Based Collaborative Filtering, MBCF)

(1)基於用戶的協同過濾演算法
基於用戶的協同過濾推薦演算法,先通過用戶歷史行為數據找到和用戶u相似的用戶,將這些用戶感興趣的且u沒有點擊過的物品推薦給用戶。
演算法主要包括以下兩個步驟:
(1)找到與目標用戶喜好相似的鄰居用戶集合。
(2)在鄰居用戶集合中,為用戶推薦其感興趣的物品。

UBCF的基本思想是將與當前用戶有相同偏好的其他用戶所喜歡的項目推薦給當前用戶。一個最典型的例子就是電影推薦,當我們不知道哪一部電影是我們比較喜歡的時候,通常會詢問身邊的朋友是否有好的電影推薦,詢問的時候我們習慣於尋找和我們品味相同或相似的朋友。

(2)基於物品的協同過濾演算法
基於物品的協同過濾演算法(Item-based Collaborative Filtering)其主要思想是,為用戶推薦那些與他們之前喜歡或點擊過的物品相似的物品。不過基於物品的協同過濾演算法並不是利用物品的內容屬性特徵來計算物品之間的相似度的。該類演算法是利用用戶的歷史行為數據計算待推薦物品之間的相似度。在該類演算法中,如果喜歡物品A的用戶大都也喜歡物品B,那麼就可以認為物品A和物品B之間的相似度很高。
演算法分為以下兩個步驟:
(1)根據用戶歷史行為數據,計算物品間的相似度。
(2)利用用戶行為和物品間的相似度為用戶生成推薦列表。

IBCF演算法是亞馬遜在2003年發表的論文中首次提出,該演算法的基本思想是根據所有用戶的歷史偏好數據計算項目之間的相似性,然後把和用戶喜歡的項目相類似的並且用戶還未選擇的其他項目推薦給用戶,例如,假設用戶喜歡項目a,則用戶喜歡與項目a高度相似且還未被用戶選擇的項目b的可能性非常大,因此將項目b推薦給用戶。

UBCF和IBCF都屬於基於內存的協同過濾演算法,這類演算法由於充分發揮了用戶的評分數據,形成全局推薦,因此具有較高的推薦質量。但隨著用戶和項目的規模增長,這類演算法的計算時間大幅上升,使得系統的性能下降。針對該問題,研究人員提出將數據挖掘中的模型和CF演算法結合,提出了基於模型的協同過濾演算法(MBCF) 。

MBCF演算法利用用戶歷史評分數據建立模型,模型建立的演算法通常有奇異值分解、聚類演算法、貝葉斯網路、關聯規則挖掘等,且通常是離線完成。由於MBCF通常會對原始評分值做近似計算,通過犧牲一定的准確性來換取系統性能,因此MBCF的推薦質量略差於UBCF和IBCF。

由於基於內容的推薦演算法和協同過濾推薦演算法都有其各自的局限性,混合推薦演算法應運而生。混合推薦演算法根據不同的應用場景,有多
種不同的結合方式,如加權、分層和分區等。

目前使用的混合推薦演算法的思想主要可以分成以下幾類:
(1)多個推薦演算法獨立運行,獲取的多個推薦結果以一定的策略進行混合,例如為每一個推薦結果都賦予一個權值的加權型混合推薦演算法和將各個推薦結果取TOP-N的交叉混合推薦演算法。

(2)將前一個推薦方法產出的中間結果或者最終結果輸出給後一個推薦方法,層層遞進,推薦結果在此過程中會被逐步優選,最終得到一個精確度比較高的結果。

(3)使用多種推薦演算法,將每種推薦演算法計算過程中產生的相似度值通過權重相加,調整每個推薦演算法相似度值的權重,以該混合相似度值為基礎,選擇出鄰域集合,並結合鄰域集合中的評估信息,得出最優的推薦結果。

BP (Back Propagation)神經網路是目前應用最廣泛的神經網路模型之一,是一種按誤差逆傳播演算法訓練的多層前饋網路。

BP神經網路模型包括輸入層、隱藏層和輸出層,每一層由一個或多個神經元組成,其結構圖如圖2-3所示。BP神經網路擁有很強的非線性映射能力和自學習、自適應能力,網路本身結構的可變性,也使其十分靈活,一個三層的BP神經網路能夠實現對任意非線性函數進行逼近。

BP神經網路的訓練過程通常分為3個過程,依次分別為數據初始化過程、正向推演計算過程以及反向權重調整過程。數據初始化是BP神經網路能夠進行有效訓練的前提,該過程通常包括輸入數據進行歸一化處理和初始權重的設置;正向推演計算是數據沿著網路方向進行推演計算;反向權重調整則是將期望輸出和網路的實際輸出進行對比,從輸出層開始,向著輸入層的方向逐層計算各層中各神經元的校正差值,調整神經元的權重。正向推演計算和反向權重調整為對單個訓練樣本一次完整的網路訓練過程,經過不斷的訓練調整,網路的實際輸出越來越趨近於期望輸出,當網路輸出到達預期目標,整個訓練過程結束。

TF-IDF(Term Frequency-Inverse Document Frequency,詞頻一逆文檔)是文本處理中常用的加權技術,廣泛應用於信息檢索、搜索引擎等領域。
TF-IDF的主要思想是:如果一個關鍵詞在文檔中出現的頻率很高,而在其他文檔中出現次數較少,則該關鍵詞被認為具有較強的代表性,即該關鍵詞通過TF-IDF計算後有較高的權重。

TextRank演算法,是一種用於文本關鍵詞排序的演算法,頁排序演算法PageRank。
PageRank基本思想是將每個網頁看成一個節點,網頁中的鏈接指向看成一條有向邊,一個網頁節點的重要程度取決於鏈接指向該網頁節點的其他節點的數量和重要權值,該過程描述如下:讓每一個網頁對其所包含的鏈接指向的網頁進行迭代投票,每次迭代投票過程中票的權重取決於網頁當前擁有的票數,當投票結果收斂或者達到指定的迭代次數時,每個網頁所獲得票數即為網頁重要程度權值。

TextRank演算法相比於TF-IDF最大的優點是TextRank是一種無監督的學習,因此不會受限於文本的主題,並且無需大規模的訓練集,可以針對單一文本進行快速的關鍵詞的權重計算。

㈣ 什麼叫模塊演算法

就是利用函數與過程在程序設計過程中把一些重復用到的部分編寫成小程序在主程序中調用,使程序模塊化

閱讀全文

與推薦演算法模塊是幹啥的相關的資料

熱點內容
自家wifi怎麼能加密 瀏覽:642
紅米k40加密門禁卡 瀏覽:845
什麼樣的源碼好看 瀏覽:156
手機主伺服器有什麼用 瀏覽:610
程序編寫命令 瀏覽:597
android發送心跳包 瀏覽:385
指標源碼和原理 瀏覽:700
汽車空調壓縮吸盤 瀏覽:208
崽崽因app版本不同不能邀請怎麼辦 瀏覽:686
poa演算法得到的解為全局最優解 瀏覽:926
python符號表達式 瀏覽:34
威馳壓縮機繼電器 瀏覽:871
華為手機怎麼設置移動數據app 瀏覽:959
空調壓縮機哪的廠家多 瀏覽:390
手指速演算法24加7怎麼算 瀏覽:139
如何用python寫vlookup函數 瀏覽:798
社保加密狗廠商 瀏覽:216
php編譯運行說法 瀏覽:957
程序員說喂 瀏覽:258
抖音直播雲伺服器 瀏覽:629