導航:首頁 > 源碼編譯 > 頭條文章里的推薦演算法

頭條文章里的推薦演算法

發布時間:2024-05-13 01:00:33

❶ 今日頭條的推薦機制是怎麼演算法

今日頭條是屬於機器演算法推薦機制的平台,也就是說,即使你沒有粉絲來到頭條上發表內容,也可以獲得比較大的推薦,一個剛來頭條不久的新人創作出10萬百萬閱讀都是有可能的。
但要想創作出閱讀量高的內容,就需要了解清楚今日頭條的推薦機制:
每一個使用今日頭條APP的用戶,都會被系統打上各種類型的標簽,比如你經常看體育看足球,今日頭條就會認為你是一個體育愛好者,那麼當有頭條號作者發布足球相關的內容時,就會優先推薦給你。
所以說要想讓你的文章獲得比較大的推薦量,首先你需要在文章的標題和內容中,體現出來你的領域和人群,以方便系統判定你的類型,幫你推送給精準的用戶。
如果你的標題和內容中都沒有體現出來相應的關鍵詞,那系統就不知道要把你的內容將會給推薦給誰,很有可能會造成閱讀量,推薦量都不好的結果。
除了上面這個最基礎的人群和關鍵詞匹配外,用戶的行為動作也是影響頭條號推薦的關鍵因素。
評論,收藏,轉發點贊和讀完率,這些都決定的,你的內容是否會獲得比較高的推薦。
一篇文章發布後會經過一輪這樣的推薦:初審、冷啟動、正常推薦、復審。
初審是一般機器審核,通過內容判定出你是否有違規行為,初審通過後,將進入冷啟動階段。
冷啟動就是系統把你的內容推送給一小批可能對你內容感興趣的人群,然後根據這個人群的反應,比如說讀完率、點贊互動評論的整體情況,對你進行下一輪的正常推薦。
如果這些互動都比較好,讀完率很高點贊,評論都很好,收藏量也很多,那麼系統就會給你加大推薦,推薦給更多的用戶。
當推薦到一定程度後,系統會給用戶的反饋情況進行復審,比如說有人舉報,或者負面評論過多,如果在復審種,發現你屬於標題黨或者內容過於負向,將系統將會不再推薦。
這是今日頭條的推薦機制和推薦流程,弄懂這個推薦流程後,會對你的頭條號運營有很大的幫助。

❷ 信息流的那點事:3 推薦演算法是如何實現的

講完信息流流行的原因( 信息流的那點事:2 為什麼信息流如此流行 ),這一篇,我們來從產品的視角,來看看推薦演算法在技術上是如何實現的。

根據需要的技術和運營成本,可以將主流的推薦演算法分為三類:基於內容元數據的推薦、基於用戶畫像的推薦、基於協同過濾演算法的推薦。

基於元數據的推薦是比較基礎的推薦演算法,基本原理是給內容打標簽,具體元數據的選取根據的內容有所不同,比較通用的角度有內容的關鍵詞、類型、作者、來源等,打開一款頭條類app,選擇屏蔽一條內容,就可以看到一些該內容的元數據顫差舉。

有了內容的元數據,就可以根據內容間的關聯,可以進行相關內容的推薦,喜歡看奇葩說的用戶,可能也會喜歡看同是米未傳媒出品的飯局的誘惑。根據內容的元數據,也可以記錄並逐漸明確用戶的內容偏好,進行數據積累,便於結合用戶的喜好進行對應的精準推薦,這也就是下面要說的基於用戶畫像的推薦的內容。

用戶畫像,類比一下就是給用戶打標簽,主要由三部分組成:用戶的基礎數據(年齡、性別等)、應用使用數據(應用使用頻率、時長等)和內容偏好數據(喜好的內容分類、種類等)。

對於基礎數據,不同年齡的用戶的內容偏好有很大差異,年輕人可能更喜歡新歌熱歌,而中年人可能更愛聽懷舊一些的歌曲;根據應用使用數據,可以進行用戶分層,活躍用戶可以多推薦內容促進使用,快要流失用戶可以推送一些打開率較高的內容來挽回,運營活動也可以更有針對性;基於內容偏好數據,可以記錄並逐漸明確用戶的內容偏好,從而進行更精準的推薦,從愛看娛樂新聞,到愛看國內明星,再到愛看某個小鮮肉,隨著內容偏好數據的逐步積累,頭條類產品的推薦也就越精確。

協同過濾演算法,簡單來說,茄碧就是尋找相近的用戶或內容來進行推薦,主要有基於用戶的協同過濾推薦和基於項目的協同過濾推薦兩種。

(1)基於用戶的協同過濾推薦

基於用戶的協同過濾推薦演算法,就是通過演算法分析出與你內容偏好相近的用戶,將他喜歡的內容推薦給你,這種推薦給你志同道合的人愛看的內容的思路,更相近於生活中的朋友作為同道中人的推薦。舉例來說,如果你喜歡ABC,而其他用戶在和你一樣喜歡ABC的同時,還都喜歡D,那麼就會把D推薦給你。

(2).基於內容的協同過濾推薦

基於內容的協同過濾推薦演算法,就是通過演算法分析出內容和內容之間的關聯度,根據你喜歡的內容推薦最相關慶跡的內容,常見的看了這個內容的用戶85%也喜歡xxx,就是這種思路。舉例來說,如果你喜歡A,而喜歡A的用戶都喜歡B,那麼就會把B推薦給你。

相比於純粹的基於內容元數據的推薦,基於內容的協同過濾推薦更能發現一些內容間深層次的聯系,比如羅輯思維經常推薦各種內容,僅僅根據內容元數據來推薦,一集羅輯思維最相關的應該是另外一集,並不能推薦內容元數據相關性不太大的節目里推薦的內容;但由於可能很多用戶看完後都會搜索查看節目里推薦的內容,基於內容的協同過濾推薦就會發現兩者的相關性,進行推薦。

介紹推薦演算法的思路時,我們一直談到一個詞「內容偏好」,這也就是實現推薦演算法時一個核心的問題——需要通過怎樣的數據,才能判定用戶的內容偏好?主流的思路有一下三種:

讓用戶手動選擇,顯然是最簡單的思路,然而由於選擇的空間必然有限,只能讓用戶從幾個大類中間挑選,無法涵蓋全部內容的同時,粒度過大推薦也就很難精準。而且剛打開應用就讓用戶選擇,或者是讓用戶使用一段時間後在去補充選擇,這樣的操作都太重可能造成用戶流失。

既然手動選擇很難實現,我們就需要從用戶的使用數據中挖掘,主流的思路就是根據用戶一些主動操作來判斷,點擊閱讀了就說明喜歡,點了贊或者回復分享就是特別喜歡,如果跳過了內容就減少推薦,點擊了不感興趣,就不再推薦。

根據用戶使用的操作來判斷內容偏好,在不斷地使用中積累與細化數據,對內容偏好的判斷也就越來越准確,這就是頭條系應用的主要策略,這樣的策略對於下沉市場的不願做出主動選擇的沉默用戶,是一個非常適合的策略,但這樣只看點擊與操作,不關注內容實際質量的策略也會造成標題黨、內容低俗等問題,在後文會進一步介紹。

既然選擇不能完全代表用戶的內容偏好,如何使判斷更加精準呢?就要從一些更加隱性的數據入手了,比如對於文章,除了點擊,閱讀時間,閱讀完成度,是否查看文章的相關推薦內容,都是可以考慮的角度,相比純粹的點擊判斷,可以一定程度上解決標題黨的問題。再比如看視頻,如果快進次數過多,雖然看完了,可能也不是特別感興趣,而值得反復回看的內容,命中內容偏好的幾率就相對較高。

介紹完了推薦演算法的原理與數據來源,讓我們來試著還原一下一條內容的完整分發流程。

首先,是內容的初始化與冷啟動。可以通過演算法對內容進行分析提取或者人工處理,提取內容的來源、分類、關鍵詞等元數據,再根據用戶畫像計算內容興趣匹配度,分發給有對應內容偏好的用戶,,也可以通過內容原匹配度,向關系鏈分發,完成內容的冷啟動。

然後,可以根據用戶閱讀時間,閱讀完成度,互動數等數據,對該內容的質量進行分析,相應的增加或者減少推薦,實現內容動態分發調節。

最後,就是協同過濾演算法發揮作用的時間,對於優質內容,可以通過基於用戶的協同過濾推薦,推薦給與該內容受眾有類似愛好的用戶,也可以基於項目的協同過濾推薦,推薦給愛觀看同類內容的用戶,讓優質內容的傳播不在局限於關系鏈。

在真正的推薦演算法實現過程中,除了基礎的內容原匹配度,內容匹配度和內容質量,還有很多值得考慮的問題,比如新聞通知等時效性內容就要短時間加權,超時則不推薦;對於用戶的內容偏好也不能永遠維持,隨著時間用戶可能會喜歡新的內容,如果一定時間內用戶對以前喜歡的內容不感興趣,就要減少該種類推薦;還有為了不陷入越喜歡越推薦,最後全部是一種內容,讓用戶厭煩的境地,對於用戶的偏好也要設定一個上限;為了保持新鮮度,需要幫助用戶發現他可能喜歡的新內容.....

最後,通過數據可以了解我們如何閱讀這篇文章,但任何數據都無法准確描述我們閱讀後的感受與收獲;再高級的演算法也只是演算法,它雖然可能比我們更了解我們實際的的內容偏好,但無法了解到我們對於內容的追求。

這可能也就是頭條系產品雖然收獲了巨大成功,但也收到了標題黨、低俗化、迴音室效應等指責的原因,下一篇,讓我們來聊聊,信息流產品的面臨的問題與可能的解決方法。

❸ 請問一下UC瀏覽器里頭條推薦原理是什麼的

是的
授權之一就是讀取你手機上安裝了哪坦族些app,有的app還會掃描你的游信襪搜索記錄,聊天內容神激等,現在這個行業很亂的,有的app不賺錢,但是就是通過底層的數據搜集來變現

閱讀全文

與頭條文章里的推薦演算法相關的資料

熱點內容
怎麼樣的伺服器地址 瀏覽:173
溫故pdf 瀏覽:665
linux文件許可權t 瀏覽:696
為什麼永劫無間解壓後無法打開 瀏覽:265
有什麼可以分期的app 瀏覽:205
pl0語言編譯程序的認識 瀏覽:333
如何查看伺服器內核組件 瀏覽:655
什麼賺錢app賺的錢快 瀏覽:932
雲喲科技為什麼要買伺服器 瀏覽:657
python搭建web伺服器 瀏覽:518
上位機是程序員么 瀏覽:414
20萬伺服器怎麼樣 瀏覽:931
光遇為什麼之前沒有安卓服 瀏覽:745
移動硬碟顯示可用加密 瀏覽:946
python萬能庫開發 瀏覽:875
向日葵遠程解壓 瀏覽:883
androidedittext布局 瀏覽:320
題庫管理app哪個好用 瀏覽:989
安卓游戲中亮度自動調節如何關閉 瀏覽:892
求派演算法 瀏覽:551