⑴ 計算機演算法是指計算機程序
計算機演算法是以一步接一步的方式來詳細描述計算機如何將輸入轉化為所要求的輸出的過程,或者說,演算法是對計算機上執行的計算過程的具體描述。
雖然演算法與計算機程序密切相關,但二者也存在區別:計算機程序是演算法的一個實例,是將演算法通過某種計算機語言表達出來的具體形式;同一個演算法可以用任何一種計算機語言來表達。
(1)電腦程序演算法擴展閱讀:
計算機演算法的特點:
1.有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他視為有效演算法。
2. 確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。
3. 有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。
4. 有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。
5.有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。
⑵ 編程演算法是什麼
程序演算法是對特定問題求解過程的描述,是指令的有限序列,每條指令完成一個或多個操作。通俗地講,就是為解決某一特定問題而採取的具體有限的操作步驟。
在有限的操作步驟內完成。有窮性是演算法的重要特性,任何一個問題的解決不論其採取什麼樣的演算法,其終歸是要把問題解決好。如果一種演算法的執行時間是無限的,或在期望的時間內沒有完成,那麼這種演算法就是無用和徒勞的,我們不能稱其為演算法。
相關信息:
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n 的函數f(n),演算法的時間復雜度也因此記做T(n)=Ο(f(n));因此,問題的規模n 越大,演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(Asymptotic Time Complexity)。
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。