⑴ 目前常用的磁碟調度演算法有哪幾種每種演算法優先考慮的問題是什麼
先來先服務演算法:這個演算法實際上不考慮訪問者要求訪問的物理位置,而只是考慮訪問者提出訪問請求的先後次序。
最短尋道時間優先演算法:要求訪問的磁軌,與當前磁頭所在的磁軌距離最近,以使每次的尋道時間最短。
掃描演算法:「電梯調度」是沿著臂的移動方向去選擇離當前讀寫詞頭最近的哪個磁軌的訪問者。
.循環掃描演算法:防止飢餓現象
⑵ 若磁頭的當前位置100柱面,磁頭正向磁軌號減小方向移動。現有一磁碟讀寫請求隊列,柱面號依次為:
磁碟調度在多道程序設計的計算機系統中,各個進程可能會不斷提出不同的對磁碟進行讀/寫操作的請求。為了盡快的響應進程的磁碟請求,人們設計了磁碟調度演算法。主要有四種磁碟調度演算法。先來先服務演算法(FCFS),最短尋道時間優先演算法(SSTF),掃描演算法(SCAN),循環掃描演算法(CSCAN)。
運用最短尋道優先演算法依次選擇的磁軌是:90、80、125、140、160、190、30、29、25、20、10。
運用電梯調度演算法依次經過的磁軌是:90、80、30、29、25、20、10、125、140、160、190。
我們根據演算法的尋道序列可以得出:最短尋道優先演算法的經過的煮麵數為310個柱面,電梯調度演算法經過的柱面數為270次。
(2)常用的磁碟調度演算法擴展閱讀:
每種磁碟調度演算法的優缺點
先來先服務演算法的優點會根據進程請求訪問磁碟的先後次序進行調度。此演算法的優點是公平、簡單,且每個進程的請求都能依次得到處理,不會出現某一進程的請求長期得不到滿足的情況,此演算法將降低設備服務的吞吐量,致使平均尋道時間可能較長,但各進程得到服務的響應時間的變化幅度較小。
最短尋道優先演算法的缺點每次的尋道時間最短,該演算法可以得到比較好的吞吐量,但卻不能保證平均尋道時間最短。其缺點是對用戶的服務請求的響應機會不是均等的,因而導致響應時間的變化幅度很大。在服務請求很多的情況下,對內外邊緣磁軌的請求將會無限期地被延遲,有些請求的響應時間將不可預期。
掃描演算法的優缺點此演算法基本上克服了最短尋道時間優先演算法的服務集中於中間磁軌和響應時間變化比較大的缺點,而具有最短尋道時間優先演算法的優點即吞吐量較大,平均響應時間較小,但由於是擺動式的掃描方法,兩側磁軌被訪問的頻率仍低於中間磁軌。
循環掃描演算法的優點是這些磁軌剛被處理,而磁碟另一端的請求密度相當高,且這些訪問請求等待的時間較長,為了解決這種情況,循環掃描演算法規定磁頭單向移動。
參考資料來源:網路-磁碟調度演算法
⑶ 磁碟調度演算法
上文介紹了磁碟的結構,本文介紹磁碟的調度演算法相關的內容。
本文內容
尋找時間(尋道時間) T s :在讀/寫數據前,需要將磁頭移動到指定磁軌所花費的時間。
尋道時間分兩步:
則尋道時間 T s = s + m * n。
磁頭移動到指定的磁軌,但是不一定正好在所需要讀/寫的扇區,所以需要通過磁碟旋轉使磁頭定位到目標扇區。
延遲時間T R :通過旋轉磁碟,使磁頭定位到目標扇區所需要的時間。設磁碟轉速為r(單位:轉/秒,或轉/分),則 平均所需延遲時間T R = (1/2)*(1/r) = 1/2r。
傳輸時間T R :從磁碟讀出或向磁碟中寫入數據所經歷的時間,假設磁碟轉速為r,此次讀/寫的位元組數為b,每個磁軌上的位元組數為N,則傳輸時間 T R = (b/N) * (1/r) = b/(rN)。
總的平均時間 T a = T s + 1/2r + b/(rN) ,由於延遲時間和傳輸時間都是與磁碟轉速有關的,且是線性相關。而轉速又是磁碟的固有屬性,因此無法通過操作系統優化延遲時間和傳輸時間。所以只能優化尋找時間。
演算法思想: 根據進程請求訪問磁碟的先後順序進行調度。
假設磁頭的初始位置是100號磁軌,有多個進程先後陸續地請求訪問55、58、39、18、90、160、150、38、184號磁軌。
按照先來先服務演算法規則,按照請求到達的順序,磁頭需要一次移動到55、58、39、18、90、160、150、38、184號磁軌。
磁頭共移動了 45 + 3 + 19 + 21 + 72 + 70 + 10 + 112 + 146 = 498個磁軌。響應一個請求平均需要移動498 / 9 = 55.3個磁軌(平均尋找長度)。
優點: 公平;如果請求訪問的磁軌比較集中的話,演算法性能還算可以 。
缺點: 如果大量進程競爭使用磁碟,請求訪問的磁軌很分散,FCFS在性能上很差,尋道時間長 。
演算法思想: 優先處理的磁軌是與當前磁頭最近的磁軌。可以保證每次尋道時間最短,但是不能保證總的尋道時間最短 。(其實是貪心演算法的思想,只是選擇眼前最優,但是總體未必最優)。
假設磁頭的初始位置是100號磁軌,有多個進程先後陸續地請求訪問55、58、39、18、90、160、150、38、184號磁軌。
磁頭總共移動了(100 -18)+ (184 -18) = 248個磁軌。響應一個請求平均需要移動248 / 9 = 27.5個磁軌(平均尋找長度)。
缺點: 可能產生飢餓現象 。
本例中,如果在處理18號磁軌的訪問請求時又來了一個38號磁軌的訪問請求,處理38號磁軌的訪問請求又來了一個18號磁軌訪問請求。如果有源源不斷的18號、38號磁軌訪問請求,那麼150、160、184號磁軌請求的訪問就永遠得不到滿足,從而產生飢餓現象。這里產生飢餓的原因是 磁頭在一小塊區域來回移動。
SSTF演算法會產生飢餓的原因在於:磁頭有可能再一個小區域內來回得移動。為了防止這個問題,可以規定: 磁頭只有移動到請求最外側磁軌或最內側磁軌才可以反向移動,如果在磁頭移動的方向上已經沒有請求,就可以立即改變磁頭移動,不必移動到最內/外側的磁軌。 這就是掃描演算法的思想。由於磁頭移動的方式很像電梯,因此也叫 電梯演算法 。
假設某磁碟的磁軌為0~200號,磁頭的初始位置是100號磁軌,且此時磁頭正在往磁軌號增大的方向移動,有多個進程先後陸續的訪問55、58、39、18、90、160、150、38、184號磁軌。
磁頭共移動了(184 - 100)+ (184 -18) = 250個磁軌。響應一個請求平均需要移動 250 / 9 = 27.5個磁軌(平均尋找長度)。
優點: 性能較好,尋道時間較短,不會產生飢餓現象。
缺點: SCAN演算法對於各個位置磁軌的響應頻率不平均 。(假設此時磁頭正在往右移動,且剛處理過90號磁軌,那麼下次處理90號磁軌的請求就需要等待低頭移動很長一段距離;而響應了184號磁軌的請求之後,很快又可以再次響應184號磁軌請求了。)
SCAN演算法對各個位置磁軌的響應頻率不平均,而C-SCAN演算法就是為了解決這個問題。規定只有磁頭朝某個特定方向移動時才處理磁軌訪問請求,而 返回時直接快速移動至最靠邊緣的並且需要訪問的磁軌上而不處理任何請求。
通俗理解就是SCAN算在改變磁頭方向時不處理磁碟訪問請求而是直接移動到另一端最靠邊的磁碟訪問請求的磁軌上。
假設某磁碟的磁軌為0~200號,磁頭的初始位置是100號磁軌,且此時磁頭正在往磁軌號增大的方向移動,有多個進程先後陸續的訪問55、58、39、18、90、160、150、38、184號磁軌。
磁頭共移動了(184 -100)+ (184 - 18)+(90 - 18)=322個磁軌。響應一個請求平均需要移動322 / 9 = 35.8個磁軌(平均尋找長度)。
優點: 相比於SCAN演算法,對於各個位置磁軌響應頻率很平均。
缺點: 相比於SCAN演算法,平均尋道時間更長。
⑷ 磁碟調度演算法SSTF演算法 不限制編程語言,可以選用C/C++等
Java版的磁碟調度演算法,
其中演算法包含
1 先來先服務
2 最短時間優先
3 最短時間優先
4 單向掃描演算法
程序是動畫演示的,程序以圓模擬磁軌,以方塊模擬磁頭根據演算法在界面上演示。
程序運行截圖如下圖所示:
⑸ 磁碟調度演算法的簡介
一次磁碟讀寫操作的時間由尋找(尋道)時間、延遲時間和傳輸時間決定:
1) 尋找時間Ts:活動頭磁碟在讀寫信息前,將磁頭移動到指定磁軌所需要的時間。這個時間除跨越n條磁軌的時間外,還包括啟動磁臂的時間s,即:Ts = m * n + s。式中,m是與磁碟驅動器速度有關的常數,約為0.2ms,磁臂的啟動時間約為2ms。
2)延遲時間Tr:磁頭定位到某一磁軌的扇區(塊號)所需要的時間,設磁碟的旋轉速度為r,則:Tr = 1 / (2 * r)。對於硬碟,典型的旋轉速度為5400r/m,相當於一周11.1ms,則Tr為5.55ms;對於軟盤,其旋轉速度在300~600r/m之間,則Tr為50~100ms。
3) 傳輸時間Tt:從磁碟讀出或向磁碟寫入數據所經歷的時間,這個時間取決於每次所讀/寫的位元組數b和磁碟的旋轉速度:Tt = b / (r * N)。式中,r為磁碟每秒鍾的轉數;N為一個磁軌上的位元組數。
在磁碟存取時間的計算中,尋道時間與磁碟調度演算法相關,下面將會介紹分析幾種演算法,而延遲時間和傳輸時間都與磁碟旋轉速度相關,且為線性相關,所以在硬體上,轉速是磁碟性能的一個非常重要的參數。
總平均存取時間Ta可以表示為:Ta = Ts + Tr + Tt。
雖然這里給出了總平均存取時間的公式,但是這個平均值是沒有太大實際意義的,因為在實際的磁碟I/O操作中,存取時間與磁碟調度演算法密切相關。調度演算法直接決定尋找時間,從而決定了總的存取時間。
⑹ 關於《操作系統》中的磁碟調度演算法
(1)先來先服務調度演算法
由於該演算法就是按照磁軌請求序列的先後次序依次訪問磁軌的,因此磁軌的訪問序列(服務順序)就是:
110、180、32、115、15、120、60、70。
當前磁頭在50號磁軌。故磁頭移動道數為:
(110-50)+(180-110)+(180-32)+(115-32)+(115-15)+(120-15)+(120-60)+(70-60)=60+70+148+83+100+105+60+10=636
(2)單向掃描調度演算法
該演算法是沿磁頭移動方向訪問距離當前磁軌最近的磁軌,當到達一個頂端時立刻返回到另一個頂端繼續掃描。本題磁頭移動方向是磁軌增加的方向,當前磁頭在50號磁軌。因此磁軌的訪問序列(服務順序)就是:60、70、110、115、120、180、15、32。而磁頭移動道數與前面(1)問差不多,也是兩兩相減,然後求和。在此略