導航:首頁 > 源碼編譯 > armlinux交叉編譯器

armlinux交叉編譯器

發布時間:2024-05-22 12:38:50

『壹』 交叉編譯器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的區別

gnueabi相關的兩個交叉編譯器: gnueabi和gnueabihf
在debian源里這兩個交叉編譯器的定義如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可見這兩個交叉編譯器適用於armel和armhf兩個不同的架構, armel和armhf這兩種架構在對待浮點運算採取了不同的策略(有fpu的arm才能支持這兩種浮點運算策略)
其實這兩個交叉編譯器只不過是gcc的選項-mfloat-abi的默認值不同. gcc的選項-mfloat-abi有三種值soft,softfp,hard(其中後兩者都要求arm里有fpu浮點運算單元,soft與後兩者是兼容的,但softfp和hard兩種模式互不兼容):
soft : 不用fpu進行浮點計算,即使有fpu浮點運算單元也不用,而是使用軟體模式。
softfp : armel架構(對應的編譯器為gcc-arm-linux-gnueabi)採用的默認值,用fpu計算,但是傳參數用普通寄存器傳,這樣中斷的時候,只需要保存普通寄存器,中斷負荷小,但是參數需要轉換成浮點的再計算。

hard : armhf架構(對應的編譯器gcc-arm-linux-gnueabihf)採用的默認值,用fpu計算,傳參數也用fpu中的浮點寄存器傳,省去了轉換, 性能最好,但是中斷負荷高。
----關於Linux命令的介紹,看看《linux就該這么學》,具體關於這一章地址3w(dot)linuxprobe/chapter-02(dot)html

BBB裡面默認是hard,我想轉為soft,沒有想到辦法。
怎樣能該啊,gcc -v,變為soft。。

『貳』 如何製作arm-linux-gcc編譯工具

一、下載源文件
源代碼文件及其版本:
binutils-2.19.tar.bz2, gcc-core-4.4.4.tar.bz2 gcc-g++-4.4.4.tar.bz2 Glibc-2.7.tar.bz2 Glibc-ports-2.7.tar.bz2 Gmp-4.2.tar.bz2 mpfr-2.4.0.tar.bz2mpc-1.0.1.tar.gz Linux-2.6.25.tar.bz2 (由於我在編譯出錯的過程中,根據出錯的信息修改了相關的C代碼,故而沒有下載相應的補丁)
一般一個完整的交叉編譯器涉及到多個軟體,主要包括bilinguals、cc、glibc等。其中,binutils主要生成一些輔助工具;gcc是用來生成交叉編譯器,主要生成arm-linux-gcc交叉編譯工具,而glibc主要提供用戶程序所需要的一些基本函數庫。

二、建立工作目錄
編譯所用主機型號 fc14.i686,虛擬機選的是VM7.0,Linux發行版選的是Fedora9,
第一次編譯時用的是root用戶(第二次用一般用戶yyz), 所有的工作目錄都在/home/yyz/cross下面建立完成,首先在/home/yyz目錄下建立cross目錄,然後進入工作目錄,查看當前目錄。命令如下:

創建工具鏈文件夾
[root@localhost cross]# mkdir embedded-toolchains
下面在此文件夾下建立如下幾個目錄:
setup-dir:存放下載的壓縮包;
src-dir:存放binutils、gcc、glibc解壓之後的源文件;
Kernel:存放內核文件,對內核的配置和編譯工作也在此完成;
build-dir :編譯src-dir下面的源文件,這是GNU推薦的源文件目錄與編譯目錄分離的做法;
tool-chain:交叉編譯工具鏈的安裝位;
program:存放編寫程序;
doc:說明文檔和腳本文件;
下面建立目錄,並拷貝源文件。
[root@localhost cross] #cd embedded- toolchains
[root@localhost embedded- toolchains] #mkdir setup-dir src-dir kernel build-dir tool-chain program doc
[root@localhost embedded- toolchains] #ls
build-dir doc kernel program setup-dir src-dir tool-chain
[root@localhost embedded- toolchains] #cd setup-dir
拷貝源文件:
這里我們採用直接拷貝源文件的方法,首先應該修改setup-dir的許可權
[root@localhost embedded- toolchains] #chmod 777 setup-dir
然後直接拷貝/home/yyz目錄下的源文件到setup-dir目錄中,如下圖:

建立編譯目錄:
[root@localhost setup-dir] #cd ../build-dir
[root@localhost build -dir] #mkdir build-binutils build-gcc build-glibc
三、輸出環境變數
輸出如下的環境變數方便我們編譯。
為簡化操作過程。下面就建立shell命令腳本environment-variables:
[root@localhost build -dir] #cd ../doc
[root@localhost doc] #mkdir scripts
[root@localhost doc] #cd scripts
用編輯器vi編輯環境變數腳本envionment-variables:[root@localhost scripts]
#vi envionment-variables
export PRJROOT=/home/yyz/cross/embedded-toolchains
export TARGET=arm-linux
export PREFIX=$PRJROOT/tool-chain
export TARGET_PREFIX=$PREFIX/$TARGET
export PATH=$PREFIX/bin:$PATH
截圖如下:
執行如下語句使環境變數生效:
[root@localhost scripts]# source ./environment-variables
四、建立二進制工具(binutils)
下面將分步介紹安裝binutils-2.19.1的過程。
[root@localhost script] # cd $PRJROOT/src-dir
[root@localhost src-dir] # tar jxvf ../setup-dir/binutils-2.19.1.tar.bz2
[root@localhost src-dir] # cd $PRJROOT/build-dir/build-binutils
創建Makefile:
[root@localhost build-binutils] #../../src-dir/binutils-2.19.1/configure --target=$TARGET --prefix=$PREFIX
在build-binutils目錄下面生成Makefile文件,然後執行make,make install,此過程比較緩慢,大約需要一個15分鍾左右。完成後可以在$PREFIX/bin下面看到我們的新的binutil。
輸入如下命令
[root@localhost build-binutils]#ls $PREFIX/bin

『叄』 Ubuntu14.04 用arm-linux-gcc 4.4.3 配置交叉編譯環境問題

安裝步驟

1、將壓縮包arm-linux-gcc-4.4.3.tar.gz存放在一個目錄下,這個目錄就是你等會解壓縮的目錄,以後這個目錄就不能隨便刪掉了

『肆』 用arm-linux交叉編譯器使用動態庫時搜索標准路徑是什麼

你可以試著加--verbose選項,可以看到它的搜索路徑。
如果你有根文件系統,那麼通過指定--sysroot=dir,他會在默認的搜索路徑之前加上一個dir,在這些地方找;
還可以額外使用-Ldir來添加搜索路徑。

『伍』 arm-linux 交叉編譯環境的建立,希望有清楚的人解答,復制的閃人

是這樣子的,計算機linux中原有的gcc是針對通用的X86等處理器而言的,編譯出來的可執行文件是只能在通用計算機上運行的,arm也是一種處理器,只不過其指令等和X86等CPU不同,所以需要有針對arm的編譯器來編譯源程序,才能在arm中運行。
我在arm9下做過linux,qt編程,需要先在PC上安裝linux,然後安裝arm-linux-gcc,同時為了可以使用arm-linux-gcc來編譯程序,需要指定環境變數,這個可以在.profile等文件中進行更改,具體辦法你查一下就知道了。或者使用export命令在終端中設置環境變數。兩種方法的結果有區別哦!
你想用2440的開發板的話就是arm9了,我還沒找到arm9的模擬工具,但是網上已經有arm7的模擬工具。
對於arm-linux-gcc,只要你安裝好並設置好了路徑(環境變數)後,在一個終端中輸入#arm-linux-gcc -v
那麼你一般可以看到你安裝的arm-linux-gcc 版本信息,到此你就可以使用它編譯你的源程序,然後將生成的可執行文件下載到arm開發板中就可以運行了。
還有什麼問題再說吧,我也是一個人摸索出來的,估計摸索了一個月才成功的在arm上運行了第一個自己的qt圖形界面程序,祝你好運!
我的建議:
一、熟悉linux 的各種操作命令(如export)
二、學會怎麼下載可執行文件到arm中
三、學會用pc控制arm上的linux

我只用過arm-linux-gcc,在你的安裝文件夾下可以找到

『陸』 交叉編譯器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的區別

一. 什麼是ABI和EABI
1) ABI: 二進制應用程序介面(Application Binary Interface (ABI) for the ARM Architecture)
在計算機中,應用二進制介面描述了應用程序(或者其他類型)和操作系統之間或其他應用程序的低級介面.
ABI涵蓋了各種細節,如:
數據類型的大小、布局和對齊;
調用約定(控制著函數的參數如何傳送以及如何接受返回值),例如,是所有的參數都通過棧傳遞,還是部分參數通過寄存器傳遞;哪個寄存器用於哪個函數參數;通過棧傳遞的第一個函數參數是最先push到棧上還是最後;
系統調用的編碼和一個應用如何向操作系統進行系統調用;
以及在一個完整的操作系統ABI中,目標文件的二進制格式、程序庫等等。
一個完整的ABI,像Intel二進制兼容標准 (iBCS) ,允許支持它的操作系統上的程序不經修改在其他支持此ABI的操作體統上運行。
ABI不同於應用程序介面(API),API定義了源代碼和庫之間的介面,因此同樣的代碼可以在支持這個API的任何系統中編譯,ABI允許編譯好的目標代碼在使用兼容ABI的系統中無需改動就能運行。
2) EABI: 嵌入式ABI
嵌入式應用二進制介面指定了文件格式、數據類型、寄存器使用、堆積組織優化和在一個嵌入式軟體中的參數的標准約定。
開發者使用自己的匯編語言也可以使用EABI作為與兼容的編譯器生成的匯編語言的介面。
支持EABI的編譯器創建的目標文件可以和使用類似編譯器產生的代碼兼容,這樣允許開發者鏈接一個由不同編譯器產生的庫。
EABI與關於通用計算機的ABI的主要區別是應用程序代碼中允許使用特權指令,不需要動態鏈接(有時是禁止的),和更緊湊的堆棧幀組織用來節省內存。廣泛使用EABI的有Power PC和ARM.
二. gnueabi相關的兩個交叉編譯器: gnueabi和gnueabihf
在debian源里這兩個交叉編譯器的定義如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可見這兩個交叉編譯器適用於armel和armhf兩個不同的架構, armel和armhf這兩種架構在對待浮點運算採取了不同的策略(有fpu的arm才能支持這兩種浮點運算策略)
其實這兩個交叉編譯器只不過是gcc的選項-mfloat-abi的默認值不同. gcc的選項-mfloat-abi有三種值soft,softfp,hard(其中後兩者都要求arm里有fpu浮點運算單元,soft與後兩者是兼容的,但softfp和hard兩種模式互不兼容):
soft : 不用fpu進行浮點計算,即使有fpu浮點運算單元也不用,而是使用軟體模式。
softfp : armel架構(對應的編譯器為gcc-arm-linux-gnueabi)採用的默認值,用fpu計算,但是傳參數用普通寄存器傳,這樣中斷的時候,只需要保存普通寄存器,中斷負荷小,但是參數需要轉換成浮點的再計算。
hard : armhf架構(對應的編譯器gcc-arm-linux-gnueabihf)採用的默認值,用fpu計算,傳參數也用fpu中的浮點寄存器傳,省去了轉換, 性能最好,但是中斷負荷高。
把以下測試使用的c文件內容保存成mfloat.c:
#include <stdio.h>
int main(void)
{
double a,b,c;
a = 23.543;
b = 323.234;
c = b/a;
printf(「the 13/2 = %f\n」, c);
printf(「hello world !\n」);
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
1
2
3
4
5
6
7
8
9
10
11
1)使用arm-linux-gnueabihf-gcc編譯,使用「-v」選項以獲取更詳細的信息:
# arm-linux-gnueabihf-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=』-v』 『-march=armv7-a』 『-mfloat-abi=hard』 『-mfpu=vfpv3-d16′ 『-mthumb』
-mfloat-abi=hard
1
2
3
1
2
3
可看出使用hard硬體浮點模式。
2)使用arm-linux-gnueabi-gcc編譯:
# arm-linux-gnueabi-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=』-v』 『-march=armv7-a』 『-mfloat-abi=softfp』 『-mfpu=vfpv3-d16′ 『-mthumb』
-mfloat-abi=softfp
1
2
3
1
2
3
可看出使用softfp模式。
三. 拓展閱讀
下文闡述了ARM代碼編譯時的軟浮點(soft-float)和硬浮點(hard-float)的編譯以及鏈接實現時的不同。從VFP浮點單元的引入到軟浮點(soft-float)和硬浮點(hard-float)的概念
VFP (vector floating-point)
從ARMv5開始,就有可選的 Vector Floating Point (VFP) 模塊,當然最新的如 Cortex-A8, Cortex-A9 和 Cortex-A5 可以配置成不帶VFP的模式供晶元廠商選擇。
VFP經過若干年的發展,有VFPv2 (一些 ARM9 / ARM11)、 VFPv3-D16(只使用16個浮點寄存器,默認為32個)和VFPv3+NEON (如大多數的Cortex-A8晶元) 。對於包含NEON的ARM晶元,NEON一般和VFP公用寄存器。
硬浮點Hard-float
編譯器將代碼直接編譯成發射給硬體浮點協處理器(浮點運算單元FPU)去執行。FPU通常有一套額外的寄存器來完成浮點參數傳遞和運算。
使用實際的硬體浮點運算單元FPU當然會帶來性能的提升。因為往往一個浮點的函數調用需要幾個或者幾十個時鍾周期。
軟浮點 Soft-float
編譯器把浮點運算轉換成浮點運算的函數調用和庫函數調用,沒有FPU的指令調用,也沒有浮點寄存器的參數傳遞。浮點參數的傳遞也是通過ARM寄存器或者堆棧完成。
現在的Linux系統默認編譯選擇使用hard-float,即使系統沒有任何浮點處理器單元,這就會產生非法指令和異常。因而一般的系統鏡像都採用軟浮點以兼容沒有VFP的處理器。
armel ABI和armhf ABI
在armel中,關於浮點數計算的約定有三種。以gcc為例,對應的-mfloat-abi參數值有三個:soft,softfp,hard。
soft是指所有浮點運算全部在軟體層實現,效率當然不高,會存在不必要的浮點到整數、整數到浮點的轉換,只適合於早期沒有浮點計算單元的ARM處理器;
softfp是目前armel的默認設置,它將浮點計算交給FPU處理,但函數參數的傳遞使用通用的整型寄存器而不是FPU寄存器;
hard則使用FPU浮點寄存器將函數參數傳遞給FPU處理。
需要注意的是,在兼容性上,soft與後兩者是兼容的,但softfp和hard兩種模式不兼容。
默認情況下,armel使用softfp,因此將hard模式的armel單獨作為一個abi,稱之為armhf。
而使用hard模式,在每次浮點相關函數調用時,平均能節省20個CPU周期。對ARM這樣每個周期都很重要的體系結構來說,這樣的提升無疑是巨大的。
在完全不改變源碼和配置的情況下,在一些應用程序上,使用armhf能得到20%——25%的性能提升。對一些嚴重依賴於浮點運算的程序,更是可以達到300%的性能提升。
Soft-float和hard-float的編譯選項
在CodeSourcery gcc的編譯參數上,使用-mfloat-abi=name來指定浮點運算處理方式。-mfpu=name來指定浮點協處理的類型。
可選類型如fpa,fpe2,fpe3,maverick,vfp,vfpv3,vfpv3-fp16,vfpv3-d16,vfpv3-d16-fp16,vfpv3xd,vfpv3xd-fp16,neon,neon-fp16,vfpv4,vfpv4-d16,fpv4-sp-d16,neon-vfpv4等。
使用-mfloat-abi=hard (等價於-mhard-float) -mfpu=vfp來選擇編譯成硬浮點。使用-mfloat-abi=softfp就能兼容帶VFP的硬體以及soft-float的軟體實現,運行時的連接器ld.so會在執行浮點運算時對於運算單元的選擇,
是直接的硬體調用還是庫函數調用,是執行/lib還是/lib/vfp下的libm。-mfloat-abi=soft (等價於-msoft-float)直接調用軟浮點實現庫。
在ARM RVCT工具鏈下,定義fpu模式:
–fpu softvfp
–fpu softvfp+vfpv2
–fpu softvfp+vfpv3
–fpu softvfp+vfpv_fp16
–fpu softvfp+vfpv_d16
–fpu softvfp+vfpv_d16_fp16.
定義浮點運算類型
–fpmode ieee_full : 所有單精度float和雙精度double的精度都要和IEEE標准一致,具體的模式可以在運行時動態指定;
–fpmode ieee_fixed : 舍入到最接近的實現的IEEE標准,不帶不精確的異常;
–fpmode ieee_no_fenv :舍入到最接近的實現的IEEE標准,不帶異常;
–fpmode std :非規格數flush到0、舍入到最接近的實現的IEEE標准,不帶異常;
–fpmode fast : 更積極的優化,可能會有一點精度損失。
Remember don』t at a loss and let the brain to calm down when comes questions, so can solve them faster!

『柒』 如何安裝arm-linux-gcc

arm-linux-gcc是基於arm架構的linux平台交叉編譯工具。在安裝時主要有以下幾步:

  1. 最常見的首先要下載arm-linux-gcc安裝包,或者也可以從網上下載arm-linux-gcc的源碼。

  2. 進入Linux,將當前目錄設為arm-linux-gcc的下載目錄,並且輸入tar -xzf arm-linux-gcc-4.4.3.tar.gz,同時將文件解壓,解壓後會有一個opt的文件夾。如下圖所示:

  3. 『捌』 arm-linux-gcc交叉編譯器的製作,以及版本選擇問題。

    ,需要必須有足夠動經驗來支持。
    另外,用 RH9 的都是高手,我想你的知識不需要來提問了吧?

    1、在 PC 上編譯 arm 的程序當然需要較差編譯器,這個需要自己安裝,或者著現成的交叉編譯器環境,一般是一個特殊參數編譯出來的 gcc + binutils + glibc + linux-header。這個每個人動環境不同,一般都需要自己編譯一個,當然沒有特殊需求,也可以找現成的。不過很難找,因為這套環境還要和你動系統搭配,不然環境不匹配,連這個環境都不能運行,那就更談不上編譯東西了。
    有關自己編譯搭建交叉編譯環境,可以看看一個特殊的 Linux 發行版 LFS 的分支: CLFS 。

    2、移植分很多意思,移植有可能就意味著這套源代碼不能在目標系統上面編譯,需要你根據相應的知識去修改源代碼來讓這套代碼適應目標編譯器的要求,比如源代碼有 SSE4 的優化,這套程序在非 SSE4 CPU 上無法編譯運行,但目標機器連 SSE1 都不支持。那麼就需要移植。
    或者移植僅僅是根據新的環境進行編譯,不需要進行源代碼修改,只需要進行一下編譯就能運行的程序,也可以稱為移植,就是從一個環境、架構 -》另一個環境、架構。都可以稱為移植,但真正的移植意味著修改程序源代碼來適應新環境。你說的這種移植是最簡單的移植。

    3、決定目標硬體環境 -》搭建目標編譯器 -》製作目標環境(內核,基礎軟體庫)-》進行應用移植(移植需要的軟體、主應用程序)-》搭建系統文件系統 -》導入目標系統-》啟動目標系統&應用。說起來很簡單,因為這是完全沒有問題的條件下。
    至於超級終端。那是用來控制目標系統的。目標系統有可能不能插鍵盤滑鼠顯示器,這就需要一個遠程網路鏈接來進行控制。以及通過遠程鏈接來發送數據。這都需要終端的支持。

    虛擬機下面進行開發,不能發揮你的計算機的性能。而且因為隔著 VMware 的軟體模擬層,可能還不會很方便的讓你鏈接目標設備。

    至於用 socket ,我還沒見到你的目標需要這個東西,因為所有的東西都是現成的源代碼。不需要你從 0 開始寫,當然你想自己寫一個系統內核,或者伺服器程序,或者全套的系統+應用,我絕對不攔你,但希望你寫完這套東西,能把源代碼發布出來。
    ads 可以認為是一個支持環境,他本身不是一個系統的開發 SDK 。
    -------------------------------------
    ads 沒用過,印象里他還有模擬器,調試器什麼的程序。功能上要比 Linux 開發環境,WinCE 環境下面的東西更多更偏向於硬體方面,畢竟 ads 是 arm 出品的,不太可能偏向於軟體部分設計。Linux 和 WinCE 都是系統而不是硬體工具。

    你可以認為交叉編譯器是一個應用程序,一個輸出器。把源代碼輸出為 arm 的代碼,這個應用程序的輸出,是靠他自己的環境,而不是當前系統的環境的。
    當前系統的各個軟體的版本,不能影響交叉編譯器輸出的環境(理論上,現實有的時候總是從別的地方給你打擊……),交叉編譯器一般至少有 gcc 、binutils 、glibc 庫、linux kernel 頭文件。

    在軟體需求上。
    頭文件誰都不依賴,glibc 只需要內核頭文件,其他程序全都依賴於 glibc 。也就是所有程序都不依賴內核,僅僅是依賴於內核頭文件。

    gcc 和 binutils 是把程序源代碼根據上面各個環節的需提供的功能來輸出為上面環節裡面的二進製程序。依賴你當前環境的,只有 gcc 和 binutils 兩個程序的執行、控制環節。只有他們兩個依賴的,而不是你的交叉編譯後的程序。

    至於編譯器版本的選擇,新版本功能更好,舊版本兼容更好。
    這個要看你的實際需要了。應用程序源代碼也調編譯器的,同時也依賴於軟體庫的功能。

    arm 開發建議穩定、兼容優先。當然也可以嘗試最新的編譯環境,來獲取更好的優化(前提是還有什麼代碼優化的話)。
    另外,團IDC網上有許多產品團購,便宜有口碑

閱讀全文

與armlinux交叉編譯器相關的資料

熱點內容
newfile命令快捷鍵 瀏覽:567
阿里雲物理伺服器 瀏覽:953
靈狐視頻app哪個好 瀏覽:257
大廠退役程序員自述 瀏覽:252
linux命令watch 瀏覽:889
加密幣哪些平台不撤出中國 瀏覽:553
max加線命令 瀏覽:424
app胖瘦模式哪個好用 瀏覽:724
可以下載源碼的軟體 瀏覽:487
程序員寫一天代碼累嗎 瀏覽:628
ie文件夾禁止訪問 瀏覽:544
百川互聯網程序員 瀏覽:784
linuxpython解釋器 瀏覽:667
興安得力軟體加密狗 瀏覽:494
智能網路攝像頭加密 瀏覽:574
軟體畢業程序員培訓 瀏覽:652
安卓陀螺儀低怎麼辦 瀏覽:248
一級建造師復習題集pdf 瀏覽:904
法理學pdf海默 瀏覽:394
伺服器內存儲器是用什麼的 瀏覽:819