Ⅰ 濾波反投影法與迭代重建演算法的優缺點比較
濾波反投影法與迭代重建演算法的優缺點比較:
確定迭代變數。在可以用迭代演算法解決的問題中,至少存在一個直接或間接地不斷由舊值遞推出新值的變數,這個變數就是迭代變數。
建立迭代關系式。所謂迭代關系式,指如何從變數的前一個值推出其下一個值的公式(或關系)。迭代關系式的建立是解決迭代問題的關鍵,通常可以使用遞推或倒推的方法來完成。
過程式控制制
在什麼時候結束迭代過程?這是編寫迭代程序必須考慮的問題。不能讓迭代過程無休止地重復執行下去。迭代過程的控制通常可分為兩種情況:一種是所需的迭代次數是個確定的值,可以計算出來;另一種是所需的迭代次數無法確定。對於前一種情況,可以構建一個固定次數的循環來實現對迭代過程的控制;對於後一種情況,需要進一步分析出用來結束迭代過程的條件。
Ⅱ 聯影ct採用什麼重建演算法
反投影重建演算法。聯影ct的重建演算法模擬CT從角度0~360度的祥棚局重建,角度越多,最後謹讓圖像的還和啟原度越高,但是圖像相對模糊,對比度低,邊界不夠清晰。
Ⅲ CT原理圖像重建演算法中濾波反投影法的有什麼樣的缺點
會造成圖像邊緣失銳和星形偽影
Ⅳ 誰能幫忙說下CT原理和反投影重建演算法是神馬書上內容太詭異了,希望用自己的經驗總結簡單一點說明。
把採集到的圖象用仿射變換配准,
為了加快運行速度可以先進行展開。
配准這一步可以在空間域,
也可在頻率域進行
然後按配准結果將這些圖象插合成一幅圖象,
再用最小二乘法求解線性方程組即可。
注意,
最好使用超鬆弛迭代法求解,
但是遇到0的時候結果可能有較大出入,
解決辦法中的一種是圖象矩陣所有元素全部加上1,
計算完成後再全部減去1,
然後再512級灰度量化
這是最簡單的重構方法,
沒有考慮圖象的模糊效應。
此外,如果有矩陣維度問題,
有兩種解決辦法,
一是將插合圖象變成正方形圖象,
一是將各插合行,列按權值累加,
反向映射,
後一種速度快些,
也不必直接求解方程,
但是不具有通用性。