導航:首頁 > 源碼編譯 > libpthread源碼

libpthread源碼

發布時間:2024-05-26 22:15:33

『壹』 怎樣徹底解決"undefined reference to pthread

問題原因:
pthread 庫不是 linux 系統默認的庫,連接時需要使用靜態庫 libpthread.a,所以在使用pthread_create()創建線程,以及調用 pthread_atfork()函數建立fork處理程序時,需要鏈接該庫。

問題解決:
編譯中要加 -lpthread參數
gcc thread.c -o thread -lpthread
thread.c為你些的源文件,不要忘了加上頭文件#include<pthread.h>

『貳』 linux 多進程信號同步問題

朋友你好:希望能幫到你。互相學習。
線程的最大特點是資源的共享性,但資源共享中的同步問題是多線程編程的難點。linux下提供了多種方式來處理線程同步,最常用的是互斥鎖、條件變數和信號量。
1)互斥鎖(mutex)
通過鎖機制實現線程間的同步。同一時刻只允許一個線程執行一個關鍵部分的代碼。
int pthread_mutex_init(pthread_mutex_t *mutex,const pthread_mutex_attr_t *mutexattr);
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_destroy(pthread_mutex *mutex);
int pthread_mutex_unlock(pthread_mutex *
(1)先初始化鎖init()或靜態賦值pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIER
attr_t有:
PTHREAD_MUTEX_TIMED_NP:其餘線程等待隊列
PTHREAD_MUTEX_RECURSIVE_NP:嵌套鎖,允許線程多次加鎖,不同線程,解鎖後重新競爭
PTHREAD_MUTEX_ERRORCHECK_NP:檢錯,與一同,線程請求已用鎖,返回EDEADLK;
PTHREAD_MUTEX_ADAPTIVE_NP:適應鎖,解鎖後重新競爭
(2)加鎖,lock,trylock,lock阻塞等待鎖,trylock立即返回EBUSY
(3)解鎖,unlock需滿足是加鎖狀態,且由加鎖線程解鎖
(4)清除鎖,destroy(此時鎖必需unlock,否則返回EBUSY,//Linux下互斥鎖不佔用內存資源
示例代碼
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = 12;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = 3;

cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);

return 0;
}
編譯: g++ -o thread testthread.cpp -lpthread
說明:pthread庫不是Linux系統默認的庫,連接時需要使用靜態庫libpthread.a,所以在使用pthread_create()創建線程,以及調用pthread_atfork()函數建立fork處理程序時,需要鏈接該庫。在編譯中要加 -lpthread參數。
2)條件變數(cond)
利用線程間共享的全局變數進行同步的一種機制。條件變數上的基本操作有:觸發條件(當條件變為 true 時);等待條件,掛起線程直到其他線程觸發條件。
int pthread_cond_init(pthread_cond_t *cond,pthread_condattr_t *cond_attr);
int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有線程的阻塞
(1)初始化.init()或者pthread_cond_t cond=PTHREAD_COND_INITIALIER(前者為動態初始化,後者為靜態初始化);屬性置為NULL
(2)等待條件成立.pthread_wait,pthread_timewait.wait()釋放鎖,並阻塞等待條件變數為真,timewait()設置等待時間,仍未signal,返回ETIMEOUT(加鎖保證只有一個線程wait)
(3)激活條件變數:pthread_cond_signal,pthread_cond_broadcast(激活所有等待線程)
(4)清除條件變數:destroy;無線程等待,否則返回EBUSY
對於
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime);
一定要在mutex的鎖定區域內使用。
如果要正確的使用pthread_mutex_lock與pthread_mutex_unlock,請參考
pthread_cleanup_push和pthread_cleanup_pop宏,它能夠在線程被cancel的時候正確的釋放mutex!
另外,posix1標准說,pthread_cond_signal與pthread_cond_broadcast無需考慮調用線程是否是mutex的擁有者,也就是說,可以在lock與unlock以外的區域調用。如果我們對調用行為不關心,那麼請在lock區域之外調用吧。
說明:
(1)pthread_cond_wait 自動解鎖互斥量(如同執行了pthread_unlock_mutex),並等待條件變數觸發。這時線程掛起,不佔用CPU時間,直到條件變數被觸發(變數為ture)。在調用 pthread_cond_wait之前,應用程序必須加鎖互斥量。pthread_cond_wait函數返回前,自動重新對互斥量加鎖(如同執行了pthread_lock_mutex)。
(2)互斥量的解鎖和在條件變數上掛起都是自動進行的。因此,在條件變數被觸發前,如果所有的線程都要對互斥量加鎖,這種機制可保證在線程加鎖互斥量和進入等待條件變數期間,條件變數不被觸發。條件變數要和互斥量相聯結,以避免出現條件競爭——個線程預備等待一個條件變數,當它在真正進入等待之前,另一個線程恰好觸發了該條件(條件滿足信號有可能在測試條件和調用pthread_cond_wait函數(block)之間被發出,從而造成無限制的等待)。
(3)pthread_cond_timedwait 和 pthread_cond_wait 一樣,自動解鎖互斥量及等待條件變數,但它還限定了等待時間。如果在abstime指定的時間內cond未觸發,互斥量mutex被重新加鎖,且pthread_cond_timedwait返回錯誤 ETIMEDOUT。abstime 參數指定一個絕對時間,時間原點與 time 和 gettimeofday 相同:abstime = 0 表示 1970年1月1日00:00:00 GMT。
(4)pthread_cond_destroy 銷毀一個條件變數,釋放它擁有的資源。進入 pthread_cond_destroy 之前,必須沒有在該條件變數上等待的線程。
(5)條件變數函數不是非同步信號安全的,不應當在信號處理程序中進行調用。特別要注意,如果在信號處理程序中調用 pthread_cond_signal 或pthread_cond_boardcast 函數,可能導致調用線程死鎖。
示常式序1
#include <stdio.h>

#include <pthread.h>

#include "stdlib.h"

#include "unistd.h"
pthread_mutex_t mutex;

pthread_cond_t cond;
void hander(void *arg)

{

free(arg);

(void)pthread_mutex_unlock(&mutex);

}
void *thread1(void *arg)

{

pthread_cleanup_push(hander, &mutex);

while(1)

{

printf("thread1 is running\n");

pthread_mutex_lock(&mutex);

pthread_cond_wait(&cond,&mutex);

printf("thread1 applied the condition\n");

pthread_mutex_unlock(&mutex);

sleep(4);

}

pthread_cleanup_pop(0);

}
void *thread2(void *arg)

{

while(1)

{

printf("thread2 is running\n");

pthread_mutex_lock(&mutex);

pthread_cond_wait(&cond,&mutex);

printf("thread2 applied the condition\n");

pthread_mutex_unlock(&mutex);

sleep(1);

}

}
int main()

{

pthread_t thid1,thid2;

printf("condition variable study!\n");

pthread_mutex_init(&mutex,NULL);

pthread_cond_init(&cond,NULL);

pthread_create(&thid1,NULL,thread1,NULL);

pthread_create(&thid2,NULL,thread2,NULL);

sleep(1);

do

{

pthread_cond_signal(&cond);

}while(1);

sleep(20);

pthread_exit(0);

return 0;

}
示常式序2:
#include <pthread.h>

#include <unistd.h>

#include "stdio.h"

#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node

{

int n_number;

struct node *n_next;

} *head = NULL;
/*[thread_func]*/

static void cleanup_handler(void *arg)

{

printf("Cleanup handler of second thread./n");

free(arg);

(void)pthread_mutex_unlock(&mtx);

}
static void *thread_func(void *arg)

{

struct node *p = NULL;

pthread_cleanup_push(cleanup_handler, p);

while (1)

{

//這個mutex主要是用來保證pthread_cond_wait的並發性

pthread_mutex_lock(&mtx);

while (head == NULL)

{

//這個while要特別說明一下,單個pthread_cond_wait功能很完善,為何

//這里要有一個while (head == NULL)呢?因為pthread_cond_wait里的線

//程可能會被意外喚醒,如果這個時候head != NULL,則不是我們想要的情況。

//這個時候,應該讓線程繼續進入pthread_cond_wait

// pthread_cond_wait會先解除之前的pthread_mutex_lock鎖定的mtx,

//然後阻塞在等待對列里休眠,直到再次被喚醒(大多數情況下是等待的條件成立

//而被喚醒,喚醒後,該進程會先鎖定先pthread_mutex_lock(&mtx);,再讀取資源

//用這個流程是比較清楚的/*block-->unlock-->wait() return-->lock*/

pthread_cond_wait(&cond, &mtx);

p = head;

head = head->n_next;

printf("Got %d from front of queue/n", p->n_number);

free(p);

}

pthread_mutex_unlock(&mtx); //臨界區數據操作完畢,釋放互斥鎖

}

pthread_cleanup_pop(0);

return 0;

}
int main(void)

{

pthread_t tid;

int i;

struct node *p;

//子線程會一直等待資源,類似生產者和消費者,但是這里的消費者可以是多個消費者,而

//不僅僅支持普通的單個消費者,這個模型雖然簡單,但是很強大

pthread_create(&tid, NULL, thread_func, NULL);

sleep(1);

for (i = 0; i < 10; i++)

{

p = (struct node*)malloc(sizeof(struct node));

p->n_number = i;

pthread_mutex_lock(&mtx); //需要操作head這個臨界資源,先加鎖,

p->n_next = head;

head = p;

pthread_cond_signal(&cond);

pthread_mutex_unlock(&mtx); //解鎖

sleep(1);

}

printf("thread 1 wanna end the line.So cancel thread 2./n");
//關於pthread_cancel,有一點額外的說明,它是從外部終止子線程,子線程會在最近的取消點,退出

//線程,而在我們的代碼里,最近的取消點肯定就是pthread_cond_wait()了。

pthread_cancel(tid);

pthread_join(tid, NULL);

printf("All done -- exiting/n");

return 0;

}
3)信號量
如同進程一樣,線程也可以通過信號量來實現通信,雖然是輕量級的。
信號量函數的名字都以"sem_"打頭。線程使用的基本信號量函數有四個。
#include <semaphore.h>
int sem_init (sem_t *sem , int pshared, unsigned int value);
這是對由sem指定的信號量進行初始化,設置好它的共享選項(linux 只支持為0,即表示它是當前進程的局部信號量),然後給它一個初始值VALUE。
兩個原子操作函數:
int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);
這兩個函數都要用一個由sem_init調用初始化的信號量對象的指針做參數。
sem_post:給信號量的值加1;
sem_wait:給信號量減1;對一個值為0的信號量調用sem_wait,這個函數將會等待直到有其它線程使它不再是0為止。
int sem_destroy(sem_t *sem);
這個函數的作用是再我們用完信號量後都它進行清理。歸還自己佔有的一切資源。
示例代碼:
#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

#include <semaphore.h>

#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo

{

sem_t s1;

sem_t s2;

time_t end_time;

}PrivInfo;

static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);

static void* pthread_func_1 (PrivInfo* thiz);

static void* pthread_func_2 (PrivInfo* thiz);
int main (int argc, char** argv)

{

pthread_t pt_1 = 0;

pthread_t pt_2 = 0;

int ret = 0;

PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));

if (thiz == NULL)

{

printf ("[%s]: Failed to malloc priv./n");

return -1;

}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);

if (ret != 0)

{

perror ("pthread_1_create:");

}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);

if (ret != 0)

{

perror ("pthread_2_create:");

}
pthread_join (pt_1, NULL);

pthread_join (pt_2, NULL);

info_destroy (thiz);
return 0;
}
static void info_init (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + 10;
sem_init (&thiz->s1, 0, 1);

sem_init (&thiz->s2, 0, 0);
return;

}
static void info_destroy (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);

sem_destroy (&thiz->s2);
free (thiz);

thiz = NULL;
return;

}
static void* pthread_func_1 (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);
while (time(NULL) < thiz->end_time)

{

sem_wait (&thiz->s2);

printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);

printf ("pthread1: pthread1 unlock/n");
sleep (1);

}
return;

}
static void* pthread_func_2 (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)

{

sem_wait (&thiz->s1);

printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);

printf ("pthread2: pthread2 unlock./n");
sleep (1);

}
return;

}
通 過執行結果後,可以看出,會先執行線程二的函數,然後再執行線程一的函數。它們兩就實現了同步

閱讀全文

與libpthread源碼相關的資料

熱點內容
用編譯語言開發軟體的過程 瀏覽:867
exe怎麼知道源碼 瀏覽:387
計算機怎麼實現可編程的 瀏覽:494
軒轅傳奇如何查看玩過的伺服器 瀏覽:41
凌陽單片機選型 瀏覽:480
android手機hosts 瀏覽:97
路由器l2tp伺服器地址是什麼 瀏覽:160
做解壓手套視頻 瀏覽:620
退役命令文件 瀏覽:676
linux遞歸查找文件 瀏覽:245
哪個app上才能看到免費的名門摯愛 瀏覽:839
mysql查看錶欄位的命令 瀏覽:523
ios里的文件夾怎麼用 瀏覽:166
壓縮銀行開戶時間表 瀏覽:429
銀行人員如何解壓 瀏覽:829
newfile命令快捷鍵 瀏覽:569
阿里雲物理伺服器 瀏覽:955
靈狐視頻app哪個好 瀏覽:259
大廠退役程序員自述 瀏覽:254
linux命令watch 瀏覽:889