導航:首頁 > 源碼編譯 > des演算法舉例

des演算法舉例

發布時間:2024-06-03 07:35:47

A. 哪位大神能給我講講DES的原理和步驟,

DES的基本原理是:(傳統的)循環(迭代)移位法進行信息位的替換/交換,打亂原信息(數據)位的順序從而達到信息加密的目的。

DES 的加密方法是:使用一個 56 位的密鑰以及附加的 8 位奇偶校驗位,產生最大 64 位的分組大小。這是一個迭代的分組密碼,使用稱為 Feistel 的技術,其中將加密的文本塊分成兩半。使用子密鑰對其中一半應用循環功能,然後將輸出與另一半進行「異或」運算;接著交換這兩半,這一過程會繼續下去,但最後一個循環不交換。DES 使用 16 個循環,使用異或,置換,代換,移位操作四種基本運算。

例如它採用下面的置換表對數據進行置換:

58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,

即將輸入的第58位換到第一位,第50位換到第2位,...,依此類推,最後一位是原來的第7位。

同時用置換表把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長32位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0 是右32位,例:設置換前的輸入值為D1D2D3......D64,則經過初始置換後的結果為:L0=D58D50...D8;R0=D57D49...D7。

然後以同樣置換方式進行多次的迭代,比如說16次迭代,得出L16,R16組成的數列密文的輸出。

接收方只要用同樣置換表進行逆變換即可解密出原文。

B. des演算法加密解密的實現

本文介紹了一種國際上通用的加密演算法—DES演算法的原理,並給出了在VC++6.0語言環境下實現的源代碼。最後給出一個示例,以供參考。
關鍵字:DES演算法、明文、密文、密鑰、VC;

本文程序運行效果圖如下:

正文:
當今社會是信息化的社會。為了適應社會對計算機數據安全保密越來越高的要求,美國國家標准局(NBS)於1997年公布了一個由IBM公司研製的一種加密演算法,並且確定為非機要部門使用的數據加密標准,簡稱DES(Data Encrypton Standard)。自公布之日起,DES演算法作為國際上商用保密通信和計算機通信的最常用演算法,一直活躍在國際保密通信的舞台上,扮演了十分突出的角色。現將DES演算法簡單介紹一下,並給出實現DES演算法的VC源代碼。
DES演算法由加密、解密和子密鑰的生成三部分組成。

一.加密

DES演算法處理的數據對象是一組64比特的明文串。設該明文串為m=m1m2…m64 (mi=0或1)。明文串經過64比特的密鑰K來加密,最後生成長度為64比特的密文E。其加密過程圖示如下:

DES演算法加密過程
對DES演算法加密過程圖示的說明如下:待加密的64比特明文串m,經過IP置換後,得到的比特串的下標列表如下:

IP 58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

該比特串被分為32位的L0和32位的R0兩部分。R0子密鑰K1(子密鑰的生成將在後面講)經過變換f(R0,K1)(f變換將在下面講)輸出32位的比特串f1,f1與L0做不進位的二進制加法運算。運算規則為:

f1與L0做不進位的二進制加法運算後的結果賦給R1,R0則原封不動的賦給L1。L1與R0又做與以上完全相同的運算,生成L2,R2…… 一共經過16次運算。最後生成R16和L16。其中R16為L15與f(R15,K16)做不進位二進制加法運算的結果,L16是R15的直接賦值。

R16與L16合並成64位的比特串。值得注意的是R16一定要排在L16前面。R16與L16合並後成的比特串,經過置換IP-1後所得比特串的下標列表如下:
IP-1 40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

經過置換IP-1後生成的比特串就是密文e.。
下面再講一下變換f(Ri-1,Ki)。
它的功能是將32比特的輸入再轉化為32比特的輸出。其過程如圖所示:

對f變換說明如下:輸入Ri-1(32比特)經過變換E後,膨脹為48比特。膨脹後的比特串的下標列表如下:

E: 32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 31

膨脹後的比特串分為8組,每組6比特。各組經過各自的S盒後,又變為4比特(具體過程見後),合並後又成為32比特。該32比特經過P變換後,其下標列表如下:

P: 16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

經過P變換後輸出的比特串才是32比特的f (Ri-1,Ki)。
下面再講一下S盒的變換過程。任取一S盒。見圖:

在其輸入b1,b2,b3,b4,b5,b6中,計算出x=b1*2+b6, y=b5+b4*2+b3*4+b2*8,再從Si表中查出x 行,y 列的值Sxy。將Sxy化為二進制,即得Si盒的輸出。(S表如圖所示)

至此,DES演算法加密原理講完了。在VC++6.0下的程序源代碼為:

for(i=1;i<=64;i++)
m1[i]=m[ip[i-1]];//64位明文串輸入,經過IP置換。

下面進行迭代。由於各次迭代的方法相同只是輸入輸出不同,因此只給出其中一次。以第八次為例://進行第八次迭代。首先進行S盒的運算,輸入32位比特串。
for(i=1;i<=48;i++)//經過E變換擴充,由32位變為48位
RE1[i]=R7[E[i-1]];
for(i=1;i<=48;i++)//與K8按位作不進位加法運算
RE1[i]=RE1[i]+K8[i];
for(i=1;i<=48;i++)
{
if(RE1[i]==2)
RE1[i]=0;
}
for(i=1;i<7;i++)//48位分成8組
{
s11[i]=RE1[i];
s21[i]=RE1[i+6];
s31[i]=RE1[i+12];
s41[i]=RE1[i+18];
s51[i]=RE1[i+24];
s61[i]=RE1[i+30];
s71[i]=RE1[i+36];
s81[i]=RE1[i+42];
}//下面經過S盒,得到8個數。S1,s2,s3,s4,s5,s6,s7,s8分別為S表
s[1]=s1[s11[6]+s11[1]*2][s11[5]+s11[4]*2+s11[3]*4+s11[2]*8];
s[2]=s2[s21[6]+s21[1]*2][s21[5]+s21[4]*2+s21[3]*4+s21[2]*8];
s[3]=s3[s31[6]+s31[1]*2][s31[5]+s31[4]*2+s31[3]*4+s31[2]*8];
s[4]=s4[s41[6]+s41[1]*2][s41[5]+s41[4]*2+s41[3]*4+s41[2]*8];
s[5]=s5[s51[6]+s51[1]*2][s51[5]+s51[4]*2+s51[3]*4+s51[2]*8];
s[6]=s6[s61[6]+s61[1]*2][s61[5]+s61[4]*2+s61[3]*4+s61[2]*8];
s[7]=s7[s71[6]+s71[1]*2][s71[5]+s71[4]*2+s71[3]*4+s71[2]*8];
s[8]=s8[s81[6]+s81[1]*2][s81[5]+s81[4]*2+s81[3]*4+s81[2]*8];
for(i=0;i<8;i++)//8個數變換輸出二進制
{
for(j=1;j<5;j++)
{
temp[j]=s[i+1]%2;
s[i+1]=s[i+1]/2;
}
for(j=1;j<5;j++)
f[4*i+j]=temp[5-j];
}
for(i=1;i<33;i++)//經過P變換
frk[i]=f[P[i-1]];//S盒運算完成
for(i=1;i<33;i++)//左右交換
L8[i]=R7[i];
for(i=1;i<33;i++)//R8為L7與f(R,K)進行不進位二進制加法運算結果
{
R8[i]=L7[i]+frk[i];
if(R8[i]==2)
R8[i]=0;
}

[ 原創文檔 本文適合中級讀者 已閱讀21783次 ] 文檔 代碼 工具

DES演算法及其在VC++6.0下的實現(下)
作者:航天醫學工程研究所四室 朱彥軍

在《DES演算法及其在VC++6.0下的實現(上)》中主要介紹了DES演算法的基本原理,下面讓我們繼續:

二.子密鑰的生成
64比特的密鑰生成16個48比特的子密鑰。其生成過程見圖:

子密鑰生成過程具體解釋如下:
64比特的密鑰K,經過PC-1後,生成56比特的串。其下標如表所示:

PC-1 57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

該比特串分為長度相等的比特串C0和D0。然後C0和D0分別循環左移1位,得到C1和D1。C1和D1合並起來生成C1D1。C1D1經過PC-2變換後即生成48比特的K1。K1的下標列表為:

PC-2 14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

C1、D1分別循環左移LS2位,再合並,經過PC-2,生成子密鑰K2……依次類推直至生成子密鑰K16。
注意:Lsi (I =1,2,….16)的數值是不同的。具體見下表:

迭代順序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位數 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

生成子密鑰的VC程序源代碼如下:

for(i=1;i<57;i++)//輸入64位K,經過PC-1變為56位 k0[i]=k[PC_1[i-1]];

56位的K0,均分為28位的C0,D0。C0,D0生成K1和C1,D1。以下幾次迭代方法相同,僅以生成K8為例。 for(i=1;i<27;i++)//循環左移兩位
{
C8[i]=C7[i+2];
D8[i]=D7[i+2];
}
C8[27]=C7[1];
D8[27]=D7[1];
C8[28]=C7[2];
D8[28]=D7[2];
for(i=1;i<=28;i++)
{
C[i]=C8[i];
C[i+28]=D8[i];
}
for(i=1;i<=48;i++)
K8[i]=C[PC_2[i-1]];//生成子密鑰k8

注意:生成的子密鑰不同,所需循環左移的位數也不同。源程序中以生成子密鑰 K8為例,所以循環左移了兩位。但在編程中,生成不同的子密鑰應以Lsi表為准。

三.解密

DES的解密過程和DES的加密過程完全類似,只不過將16圈的子密鑰序列K1,K2……K16的順序倒過來。即第一圈用第16個子密鑰K16,第二圈用K15,其餘類推。
第一圈:

加密後的結果

L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15
同理R15=L14⊕f(R14,K15), L15=R14。
同理類推:
得 L=R0, R=L0。
其程序源代碼與加密相同。在此就不重寫。

四.示例
例如:已知明文m=learning, 密鑰 k=computer。
明文m的ASCII二進製表示:

m= 01101100 01100101 01100001 01110010
01101110 01101001 01101110 01100111

密鑰k的ASCII二進製表示:

k=01100011 01101111 01101101 01110000
01110101 01110100 01100101 01110010

明文m經過IP置換後,得:

11111111 00001000 11010011 10100110 00000000 11111111 01110001 11011000

等分為左右兩段:

L0=11111111 00001000 11010011 10100110 R0=00000000 11111111 01110001 11011000

經過16次迭代後,所得結果為:

L1=00000000 11111111 01110001 11011000 R1=00110101 00110001 00111011 10100101
L2=00110101 00110001 00111011 10100101 R2=00010111 11100010 10111010 10000111
L3=00010111 11100010 10111010 10000111 R3=00111110 10110001 00001011 10000100
L4= R4=
L5= R5=
L6= R6=
L7= R7=
L8= R8=
L9= R9=
L10= R10=
L11= R11=
L12= R12=
L13= R13=
L14= R14=
L15= R15=
L16= R16=

其中,f函數的結果為:

f1= f2=
f3= f4=
f5= f6=
f7= f8=
f9= f10=
f11= f12=
f13= f14=
f15= f16=

16個子密鑰為:

K1= K2=
K3= K4=
K5= K6=
K7= K8=
K9= K10=
K11= K12=
K13= K14=
K15= K16=

S盒中,16次運算時,每次的8 個結果為:
第一次:5,11,4,1,0,3,13,9;
第二次:7,13,15,8,12,12,13,1;
第三次:8,0,0,4,8,1,9,12;
第四次:0,7,4,1,7,6,12,4;
第五次:8,1,0,11,5,0,14,14;
第六次:14,12,13,2,7,15,14,10;
第七次:12,15,15,1,9,14,0,4;
第八次:15,8,8,3,2,3,14,5;
第九次:8,14,5,2,1,15,5,12;
第十次:2,8,13,1,9,2,10,2;
第十一次:10,15,8,2,1,12,12,3;
第十二次:5,4,4,0,14,10,7,4;
第十三次:2,13,10,9,2,4,3,13;
第十四次:13,7,14,9,15,0,1,3;
第十五次:3,1,15,5,11,9,11,4;
第十六次:12,3,4,6,9,3,3,0;

子密鑰生成過程中,生成的數值為:

C0=0000000011111111111111111011 D0=1000001101110110000001101000
C1=0000000111111111111111110110 D1=0000011011101100000011010001
C2=0000001111111111111111101100 D2=0000110111011000000110100010
C3=0000111111111111111110110000 D3=0011011101100000011010001000
C4=0011111111111111111011000000 D4=1101110110000001101000100000
C5=1111111111111111101100000000 D5=0111011000000110100010000011
C6=1111111111111110110000000011 D6=1101100000011010001000001101
C7=1111111111111011000000001111 D7=0110000001101000100000110111
C8=1111111111101100000000111111 D8=1000000110100010000011011101
C9=1111111111011000000001111111 D9=0000001101000100000110111011
C10=1111111101100000000111111111 D10=0000110100010000011011101100
C11=1111110110000000011111111111 D11=0011010001000001101110110000
C12=1111011000000001111111111111 D12=1101000100000110111011000000
C13=1101100000000111111111111111 D13=0100010000011011101100000011
C14=0110000000011111111111111111 D14=0001000001101110110000001101
C15=1000000001111111111111111101 D15=0100000110111011000000110100
C16=0000000011111111111111111011 D16=1000001101110110000001101000

解密過程與加密過程相反,所得的數據的順序恰好相反。在此就不贅述。

參考書目:
《計算機系統安全》 重慶出版社 盧開澄等編著
《計算機密碼應用基礎》 科學出版社 朱文余等編著
《Visual C++ 6.0 編程實例與技巧》 機械工業出版社 王華等編著

C. 求DES加密演算法詳解拜託了各位 謝謝

DES加密演算法是分組加密演算法,明文以64位為單位分成塊。64位數據在64位密鑰的控制下,經過初始變換後,進行16輪加密迭代:64位數據被分成左右兩半部分,每部分32位,密鑰與右半部分相結合,然後再與左半部分相結合,結果作為新的右半部分;結合前的右半部分作為新的左半部分。這一系列步驟組成一輪。這種輪換要重復16次。最後一輪之後,再進行初始置換的逆置換,就得到了64位的密文。 DES的加密過程可分為加密處理,加密變換和子密鑰生成幾個部分組成。 1.加密處理過程 (1)初始變換。加密處理首先要對64位的明文按表1所示的初始換位表IP進行變換。表中的數值表示輸入位被置換後的新位置。例如輸入的第58位,在輸出的時候被置換到第1位;輸入的是第7位,在輸出時被置換到第64位。 (2)加密處理。上述換位處理的輸出,中間要經過16輪加密變換。初始換位的64位的輸出作為下一次的輸入,將64位分為左、右兩個32位,分別記為L0和R0,從L0、R0到L16、R16,共進行16輪加密變換。其中,經過n輪處理後的點左右32位分別為Ln和Rn,則可做如下定義: Ln=Rn-1 Rn=Ln-1 其中,kn是向第n輪輸入的48位的子密鑰,Ln-1和Rn-1分別是第n-1輪的輸出,f是Mangler函數。 (3)最後換位。進行16輪的加密變換之後,將L16和R16合成64位的數據,再按照表2所示的 最後換位表進行IP-1的換位,得到64位的密文,這就是DES演算法加密的結果。 2.加密變換過程 通過重復某些位將32位的右半部分按照擴展表3擴展換位表擴展為48位,而56位的密鑰先移位然後通過選擇其中的某些位減少至48位,48位的右半部分通過異或操作和48位的密鑰結合,並分成6位的8個分組,通過8個S-盒將這48位替代成新的32位數據,再將其置換一次。這些S-盒輸入6位,輸出4位。 一個S盒中具有4種替換表(行號用0、1、2、3表示),通過輸入的6位的開頭和末尾兩位選定行,然後按選定的替換表將輸入的6位的中間4位進行替代,例如:當向S1輸入011011時,開頭和結尾的組合是01,所以選中編號為1的替代表,根據中間4位1101,選定第13列,查找表中第1行第13列所示的值為5,即輸出0101,這4位就是經過替代後的值。按此進行,輸出32位,再按照表4 單純換位表P進行變換,這樣就完成了f(R,K)的變換 3.子密鑰生成過程 鑰通常表示為64位的自然數,首先通過壓縮換位PC-1去掉每個位元組的第8位,用作奇偶校驗,因此,密鑰去掉第8、16、24……64位減至56位,所以實際密鑰長度為56位,而每輪要生成48位的子密鑰。 輸入的64位密鑰,首先通過壓縮換位得到56位的密鑰,每層分成兩部分,上部分28位為C0,下部分為D0。C0和D0依次進行循環左移操作生成了C1和D1,將C1和D1合成56位,再通過壓縮換位PC-2輸出48位的子密鑰K1,再將C1和D1進行循環左移和PC-2壓縮換位,得到子密鑰K2......以此類推,得到16個子密鑰。密鑰壓縮換位表如表6所示。在產生子密鑰的過程中,L1、L2、L9、L16是循環左移1位,其餘都是左移2位,左移次數如表7所示。 詳細信息見 http://www.studa.net/yingyong/100126/11085967.html

D. des加密演算法

des加密演算法如下:

一、DES加密演算法簡介

DES(Data Encryption Standard)是目前最為流行的加密演算法之一。DES是對稱的,也就是說它使用同一個密鑰來加密和解密數據。

DES還是一種分組加密演算法,該演算法每次處理固定長度的數據段,稱之為分組。DES分組的大小是64位,如果加密的數據長度不是64位的倍數,可以按照某種具體的規則來填充位。

從本質上來說,DES的安全性依賴於虛假表象,從密碼學的術語來講就是依賴於「混亂和擴散」的原則。混亂的目的是為隱藏任何明文同密文、或者密鑰之間的關系,而擴散的目的是使明文中的有效位和密鑰一起組成盡可能多的密文。兩者結合到一起就使得安全性變得相對較高。

DES演算法具體通過對明文進行一系列的排列和替換操作來將其加密。過程的關鍵就是從給定的初始密鑰中得到16個子密鑰的函數。要加密一組明文,每個子密鑰按照順序(1-16)以一系列的位操作施加於數據上,每個子密鑰一次,一共重復16次。每一次迭代稱之為一輪。要對密文進行解密可以採用同樣的步驟,只是子密鑰是按照逆向的順序(16-1)對密文進行處理。

E. DES加密過程和解密過程的區別

數據加密標准DES(Data Encryption Standard)演算法是一個分組加密演算法,也是一個對稱演算法,加密和解密使用同一個演算法,利用傳統的換位、異或、置換等加密方法。DES是IBM在上個世紀70年代開發的簡密鑰對稱加解密演算法。

加密過程和解密過程的區別:「方向和過程剛好相反」。也就是說「解密過程是加密過程的反過程」,DES演算法解密過程是加密過程的「逆」運算。

以Triple DES為例說明

加密過程:
1、以K1加密
2、以K2解密
3、以K3加密

解密過程(密鑰順序及應用方向與加密過程相反):

1、以K3解密
2、以K2加密
3、以K1解密

說明:K1、K2、K3是密鑰。

F. 什麼是古典加密演算法

古典加密演算法分為替代演算法和置換移位法。

1、替代演算法

替代演算法用明文的字母由其他字母或數字或符號所代替。最著名的替代演算法是愷撒密碼。凱撒密碼的原理很簡單,其實就是單字母替換。

例子:

明文:abcdefghijklmnopq

密文:defghijklmnopqrst

2、置換移位法

使用置換移位法的最著名的一種密碼稱為維吉尼亞密碼。它以置換移位為基礎的周期替換密碼。

在維吉尼亞密碼中,加密密鑰是一個可被任意指定的字元串。加密密鑰字元依次逐個作用於明文信息字元。明文信息長度往往會大於密鑰字元串長度,而明文的每一個字元都需要有一個對應的密鑰字元,因此密鑰就需要不斷循環,直至明文每一個字元都對應一個密鑰字元。

其他常見的加密演算法

1、DES演算法是密碼體制中的對稱密碼體制,把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位。

2、3DES是基於DES的對稱演算法,對一塊數據用三個不同的密鑰進行三次加密,強度更高。

3、RC2和RC4是對稱演算法,用變長密鑰對大量數據進行加密,比DES快。

4、IDEA演算法是在DES演算法的基礎上發展出來的,是作為迭代的分組密碼實現的,使用128位的密鑰和8個循環。

5、RSA是由RSA公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的,非對稱演算法。

6、DSA,即數字簽名演算法,是一種標準的 DSS(數字簽名標准),嚴格來說不算加密演算法。

7、AES是高級加密標准對稱演算法,是下一代的加密演算法標准,速度快,安全級別高,在21世紀AES 標準的一個實現是 Rijndael演算法。

G. 用C++或者C語言實現DES演算法,明文learing,密鑰computer.求出密文(寫出過程)

#include

DWORDLONG dwlKey_PC_1[64]={
57,49,41,33,25,17,9,
1,58,50,42,34,26,18,
10,2,59,51,43,35,27,
19,11,3,60,52,44,36,
63,55,47,39,31,23,15,
7,62,54,46,38,30,22,
14,6,61,53,45,37,29,
21,13,5,28,20,12,4,0};

DWORDLONG dwlKey_PC_2[64]={
14,17,11,24,1,5,
3,28,15,6,21,10,
23,19,12,4,26,8,
16,7,27,20,13,2,
41,52,31,37,47,55,
30,40,51,45,33,48,
44,49,39,56,34,53,
46,42,50,36,29,32,0};

DWORDLONG dwlData_IP[65]={
58,50,42,34,26,18,10,2,
60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,
64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,
59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,
63,55,47,39,31,23,15,7,0};

DWORDLONG dwlData_Expansion[64]={
32,1,2,3,4,5,
4,5,6,7,8,9,
8,9,10,11,12,13,
12,13,14,15,16,17,
16,17,18,19,20,21,
20,21,22,23,24,25,
24,25,26,27,28,29,
28,29,30,31,32,1,0};

DWORDLONG dwlData_P[33]={
16,7,20,21,
29,12,28,17,
1,15,23,26,
5,18,31,10,
2,8,24,14,
32,27,3,9,
19,13,30,6,
22,11,4,25,0};

DWORDLONG dwlData_FP[65]={
40,8,48,16,56,24,64,32,
39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,
37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,
35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58,26,
33,1,41,9,49,17,57,25,0};

DWORDLONG OS[512]={
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,

15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,

10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,

7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,

2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,

12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,

4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,

13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11
};
-------------------------------------
des.cpp
-------------------------------------

/*注意:這只是標准DES演算法的例子,所以速度並不是很快,不適用於大量數據加密的場*/
/*合.UNIX的密碼也採用DES,不過它在裡面加了點其它的東西.所以結果和DES的結果 */
/*不一樣. 由於使用了WINDOWS類庫,所以必須在WINDOWS環境下編譯. */
/**************************************************************************/

#include
#include
#include
#include
#include "Schedle.h"

class CShift{
public:
DWORDLONG mask[16];
int step[16];
CShift(){
for(int i=0;i step=2;
mask=0xc000000;
}
step[0]=step[1]=step[8]=step[15]=1;
mask[0]=mask[1]=mask[8]=mask[15]=0x8000000;
}
};

class CDES{

public:

CDES(){
m_dwlKey=0;
m_dwlData=0;
ConvertTableToMask(dwlKey_PC_1,64);
//PrintTable(dwlKey_PC_1,7,8);
ConvertTableToMask(dwlKey_PC_2,56);
ConvertTableToMask(dwlData_IP,64);
ConvertTableToMask(dwlData_Expansion,32);
ConvertTableToMask(dwlData_FP,64);
ConvertTableToMask(dwlData_P,32);
Generate_S();

}
void PrintBit(DWORDLONG);
void EncryptKey(char *);
unsigned char* EncryptData(unsigned char *);
unsigned char* DescryptData(unsigned char*);

private:
void ConvertTableToMask(DWORDLONG *,int);
void Generate_S(void);
void PrintTable(DWORDLONG*,int,int);
DWORDLONG ProcessByte(unsigned char*,BOOL);
DWORDLONG PermuteTable(DWORDLONG,DWORDLONG*,int);
void Generate_K(void);
void EncryptKernel(void);
DWORDLONG Generate_B(DWORDLONG,DWORDLONG*);
/*For verify schele permutation only*/
DWORDLONG UnPermuteTable(DWORDLONG,DWORDLONG*,int);
/**************************************/
DWORDLONG dwlData_S[9][4][16];
CShift m_shift;
DWORDLONG m_dwlKey;
DWORDLONG m_dwlData;
DWORDLONG m_dwl_K[17];
};

void CDES::EncryptKey(char *key){

printf("\nOriginal Key: %s",key);
m_dwlKey=ProcessByte((unsigned char*)key,TRUE);
//PrintBit(m_dwlKey);
m_dwlKey=PermuteTable(m_dwlKey,dwlKey_PC_1,56);
//PrintBit(m_dwlKey);
Generate_K();
//printf("\n******************************************\n");
}

void CDES::Generate_K(void){

DWORDLONG C[17],D[17],tmp;

C[0]=m_dwlKey>>28;
D[0]=m_dwlKey&0xfffffff;

for(int i=1;i tmp=(C[i-1]&m_shift.mask[i-1])>>(28-m_shift.step[i-1]);
C=((C[i-1] tmp=(D[i-1]&m_shift.mask[i-1])>>(28-m_shift.step[i-1]);
D=((D[i-1] m_dwl_K=(C m_dwl_K=PermuteTable(m_dwl_K,dwlKey_PC_2,48);
}
}

DWORDLONG CDES::ProcessByte(unsigned char *key,BOOL shift){

unsigned char tmp;
DWORDLONG byte=0;
int i=0;

while(i while(*key){
if(byte!=0)
byte tmp=*key;
if(shift)
tmp byte│=tmp;
i++;
key++;
}
if(i byte i++;
}
return byte;
}

DWORDLONG CDES::PermuteTable(DWORDLONG dwlPara,DWORDLONG* dwlTable,int nDestLen)
{

int i=0;
DWORDLONG tmp=0,moveBit;

while(i moveBit=1;
if(dwlTable&dwlPara){
moveBit tmp│=moveBit;
}
i++;
}
return tmp;
}

DWORDLONG CDES::UnPermuteTable(DWORDLONG dwlPara,DWORDLONG* dwlTable,int nDestLe
n){

DWORDLONG tmp=0;
int i=nDestLen-1;

while(dwlPara!=0){
if(dwlPara&0x01)
tmp│=dwlTable;
dwlPara>>=1;
i--;
}
return tmp;
}

void CDES::PrintTable(DWORDLONG *dwlPara,int col,int row){

int i,j;
for(i=0;i printf("\n");
getch();
for(j=0;j PrintBit(dwlPara[i*col+j]);
}
}

void CDES::PrintBit(DWORDLONG bitstream){

char out[76];
int i=0,j=0,space=0;

while(bitstream!=0){
if(bitstream&0x01)
out[i++]='1';
else
out[i++]='0';
j++;
if(j%8==0){
out[i++]=' ';
space++;
}

bitstream=bitstream>>1;
}
out='\0';
strcpy(out,strrev(out));
printf("%s **:%d\n",out,i-space);
}

void CDES::ConvertTableToMask(DWORDLONG *mask,int max){

int i=0;
DWORDLONG nBit=1;

while(mask!=0){
nBit=1;
nBit mask[i++]=nBit;
}
}

void CDES::Generate_S(void){

int i;
int j,m,n;
m=n=0;
j=1;

for(i=0;i dwlData_S[j][m][n]=OS;
n=(n+1)%16;
if(!n){
m=(m+1)%4;
if(!m)
j++;
}
}
}

unsigned char * CDES::EncryptData(unsigned char *block){

unsigned char *EncrytedData=new unsigned char(15);

printf("\nOriginal Data: %s\n",block);
m_dwlData=ProcessByte(block,0);
//PrintBit(m_dwlData);
m_dwlData=PermuteTable(m_dwlData,dwlData_IP,64);
EncryptKernel();
//PrintBit(m_dwlData);
DWORDLONG bit6=m_dwlData;
for(int i=0;i EncrytedData[7-i]=(unsigned char)(bit6&0x3f)+46;
bit6>>=6;
}
EncrytedData[11]='\0';
printf("\nAfter Encrypted: %s",EncrytedData);

for(i=0;i EncrytedData[7-i]=(unsigned char)(m_dwlData&0xff);
m_dwlData>>=8;
}
EncrytedData[8]='\0';

return EncrytedData;
}

void CDES::EncryptKernel(void){

int i=1;

DWORDLONG L[17],R[17],B[9],EK,PSB;
L[0]=m_dwlData>>32;
R[0]=m_dwlData&0xffffffff;

for(i=1;i L=R[i-1];
R[i-1]=PermuteTable(R[i-1],dwlData_Expansion,48);//Expansion R
EK=R[i-1]^m_dwl_K;//E Permutation
PSB=Generate_B(EK,B);//P Permutation
R=L[i-1]^PSB;
}

R[16] m_dwlData=R[16]│L[16];
m_dwlData=PermuteTable(m_dwlData,dwlData_FP,64);
}

unsigned char* CDES::DescryptData(unsigned char *desData){

int i=1;
unsigned char *DescryptedData=new unsigned char(15);
DWORDLONG L[17],R[17],B[9],EK,PSB;
DWORDLONG dataPara;

dataPara=ProcessByte(desData,0);
dataPara=PermuteTable(dataPara,dwlData_IP,64);

R[16]=dataPara>>32;
L[16]=dataPara&0xffffffff;

for(i=16;i>=1;i--){
R[i-1]=L;
L=PermuteTable(L,dwlData_Expansion,48);//Expansion L
EK=L^m_dwl_K;//E Permutation
PSB=Generate_B(EK,B);//P Permutation
L[i-1]=R^PSB;
}

L[0] dataPara=L[0]│R[0];
dataPara=PermuteTable(dataPara,dwlData_FP,64);

//PrintBit(dataPara);

for(i=0;i DescryptedData[7-i]=(unsigned char)(dataPara&0xff);
dataPara>>=8;
}
DescryptedData[8]='\0';
printf("\nAfter Decrypted: %s\n",DescryptedData);

return DescryptedData;
}

DWORDLONG CDES::Generate_B(DWORDLONG EKPara,DWORDLONG *block){

int i,m,n;
DWORDLONG tmp=0;

for(i=8;i>0;i--){
block=EKPara&0x3f;
m=(int)(block&0x20)>>4;
m│=block&0x01;
n=(int)(block >2;
block=dwlData_S[m][n];
EKPara>>=6;
}

for(i=1;i tmp│=block;
tmp }
tmp>>=4;
tmp=PermuteTable(tmp,dwlData_P,32);

return tmp;
}

void main(void){

CDES des;
des.EncryptKey("12345678");
unsigned char *result=des.EncryptData((unsigned char*)"DemoData");
des.DescryptData(result);
}

H. 對稱密碼體制的內容和典型演算法

內容:在對稱加密系統中,加密和解密採用相同的密鑰。因為加解密密鑰相同,需要通信的雙方必須選擇和保存他們共同的密鑰,各方必須信任對方不會將密鑰泄密出去,這樣就可以實現數據的機密性和完整性。

演算法:DES(Data Encryption Standard數據加密標准)演算法及其變形Triple DES(三重DES),GDES(廣義DES);歐洲的IDEA;日本的FEAL N、RC5等。

Triple DES使用兩個獨立的56bit密鑰對交換的信息進行3次加密,從而使其有效長度達到112bit。RC2和RC4方法是RSA數據安全公司的對稱加密專利演算法,它們採用可變密鑰長度的演算法。通過規定不同的密鑰長度,,C2和RC4能夠提高或降低安全的程度。

(8)des演算法舉例擴展閱讀:

密碼體制的基本模式:

通常的密碼體制採用移位法、代替法和代數方法來進行加密和解密的變換,可以採用一種或幾種方法結合的方式作為數據變換的基本模式,下面舉例說明:

移位法也叫置換法。移位法把明文中的字元重新排列,字元本身不變但其位置改變了。

例如最簡單的例子:把文中的字母和字元倒過來寫。

或將密文以固定長度來發送

5791ECNI SYLDIPAT DEVLOBES AHYTIRUC ESATAD**。

I. DES 加密演算法是怎樣的一種演算法要通俗解釋..

1977年1月,美國政府頒布:採納IBM公司設計的方案作為非機密數據的正式數據加密標准(DES棗Data Encryption Standard)。

目前在國內,隨著三金工程尤其是金卡工程的啟動,DES演算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收費站等領域被廣泛應用,以此來實現關鍵數據的保密,如信用卡持卡人的PIN的加密傳輸,IC卡與POS間的雙向認證、金融交易數據包的MAC校驗等,均用到DES演算法。
DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。
DES演算法是這樣工作的:如Mode為加密,則用Key 去把數據Data進行加密, 生成Data的密碼形式(64位)作為DES的輸出結果;如Mode為解密,則用Key去把密碼形式的數據Data解密,還原為Data的明碼形式(64位)作為DES的輸出結果。在通信網路的兩端,雙方約定一致的Key,在通信的源點用Key對核心數據進行DES加密,然後以密碼形式在公共通信網(如電話網)中傳輸到通信網路的終點,數據到達目的地後,用同樣的Key對密碼數據進行解密,便再現了明碼形式的核心數據。這樣,便保證了核心數據(如PIN、MAC等)在公共通信網中傳輸的安全性和可靠性。
通過定期在通信網路的源端和目的端同時改用新的Key,便能更進一步提高數據的保密性,這正是現在金融交易網路的流行做法。

DES演算法詳述
DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,整個演算法的主流程圖如下:

其功能是把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長32位,其置換規則見下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即將輸入的第58位換到第一位,第50位換到第2位,...,依此類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0 是右32位,例:設置換前的輸入值為D1D2D3......D64,則經過初始置換後的結果為:L0=D58D50...D8;R0=D57D49...D7。
經過16次迭代運算後。得到L16、R16,將此作為輸入,進行逆置換,即得到密文輸出。逆置換正好是初始置的逆運算,例如,第1位經過初始置換後,處於第40位,而通過逆置換,又將第40位換回到第1位,其逆置換規則如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大換位表
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
單純換位表
16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
在f(Ri,Ki)演算法描述圖中,S1,S2...S8為選擇函數,其功能是把6bit數據變為4bit數據。下面給出選擇函數Si(i=1,2......8)的功能表:
選擇函數Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1為例說明其功能,我們可以看到:在S1中,共有4行數據,命名為0,1、2、3行;每行有16列,命名為0、1、2、3,......,14、15列。
現設輸入為: D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然後在S1表中查得對應的數,以4位二進製表示,此即為選擇函數S1的輸出。下面給出子密鑰Ki(48bit)的生成演算法
從子密鑰Ki的生成演算法描述圖中我們可以看到:初始Key值為64位,但DES演算法規定,其中第8、16、......64位是奇偶校驗位,不參與DES運算。故Key 實際可用位數便只有56位。即:經過縮小選擇換位表1的變換後,Key 的位數由64 位變成了56位,此56位分為C0、D0兩部分,各28位,然後分別進行第1次循環左移,得到C1、D1,將C1(28位)、D1(28位)合並得到56位,再經過縮小選擇換位2,從而便得到了密鑰K0(48位)。依此類推,便可得到K1、K2、......、K15,不過需要注意的是,16次循環左移對應的左移位數要依據下述規則進行:
循環左移位數
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介紹了DES演算法的加密過程。DES演算法的解密過程是一樣的,區別僅僅在於第一次迭代時用子密鑰K15,第二次K14、......,最後一次用K0,演算法本身並沒有任何變化。

閱讀全文

與des演算法舉例相關的資料

熱點內容
oracle導出表命令 瀏覽:901
怎麼寫域名加密 瀏覽:1001
手機文件壓縮出錯 瀏覽:516
如何登錄毒app 瀏覽:834
汽車中控台加密 瀏覽:862
海南農村信用社app如何開通簡訊 瀏覽:809
phpdns緩存 瀏覽:415
ipad騰訊視頻app如何播放本地視頻 瀏覽:990
蝦米伺服器關閉如何找到以前的歌 瀏覽:18
php自動建站 瀏覽:475
命令與征服3游俠網 瀏覽:970
騰訊雲買哪個地區伺服器 瀏覽:249
香港哪裡有app賣內地零食 瀏覽:683
編譯內核找不到工具鏈 瀏覽:453
java常見模式 瀏覽:504
典欣空調壓縮機 瀏覽:425
app如何認定許可權 瀏覽:855
兩個復數相除的角度計演算法則 瀏覽:590
電商類app開發怎麼收費 瀏覽:306
打造電子書反編譯工具 瀏覽:79