『壹』 急用!!!數據挖掘的六種常用演算法和技術分別是什麼
數據挖掘技術和演算法技術:概念方法
演算法:一步一步具體實現的細節
不同的目標要調用不同的技術
數據挖掘根據其目標分為說明性(Prescriptive)和描述性 (Descriptive)數據挖掘兩種
不同的Data Type調用不同技術
三種數據挖掘技術
自動聚集檢測;決策樹;神經網路
原因: 大量的商業軟體應用
覆蓋了數據挖掘一個較廣的范圍
直接數據挖掘目標是預言,估值,分類,預定義目標變數的特徵行為
神經元網路;決策樹
間接數據挖掘:沒有目標變數被預言,目的是發現整個數據集的結構
聚集檢測
自動聚集檢測
方法
K-均值是講整個數據集分為K個聚集的演算法。
K-均值聚集檢測如何工作
隨機選取K個記錄,作為種子節點;
對剩餘的記錄集合,計算每個記錄與K個種子節點的距離,將每個記錄歸到最近的那個種子節點,這樣整個記錄集初次劃分為K個聚集;
對每個聚集,計算聚集的質心(聚集中心點);
以每個質心為種子節點,重復上述步驟,直至聚集不再改變。
Consequences of Choosing Clustering
選擇距離函數
選擇合適的聚集數
對聚集的解釋
構造決策樹
可視化看聚集如何受輸入變數的影響
單變數測試
什麼時候使用聚集檢測
決策樹
決策樹分類
決策樹分為分類樹和回歸樹兩種,分類樹對離散變數做決策樹,回歸樹對連續變數做決策樹。
一般的數據挖掘工具,允許選擇分裂條件和修剪規則,以及控制參數(最小節點的大小,最大樹的深度等等),來限制決策樹的overfitting。
決策樹如何工作
決策樹是一棵樹,樹的根節點是整個數據集合空間,每個分節點是對一個單一變數的測試,該測試將數據集合空間分割成兩個或更多塊。每個葉節點是屬於單一類別的記錄。
首先,通過訓練集生成決策樹,再通過測試集對決策樹進行修剪。決策樹的功能是預言一個新的記錄屬於哪一類。
決策樹如何構建
通過遞歸分割的過程構建決策樹。
尋找初始分裂
整個訓練集作為產生決策樹的集合,訓練集每個記錄必須是已經分好類的。
決定哪個屬性(Field)域作為目前最好的分類指標。一般的做法是窮盡所有的屬性域,對每個屬性域分裂的好壞做出量化,計算出最好的一個分裂。量化的標準是計算每個分裂的多樣性(diversity)指標GINI指標。
樹增長到一棵完整的樹
重復第一步,直至每個葉節點內的記錄都屬於同一類。
數據的修剪
選擇決策樹的結果
處理輸入變數
樹和規則
選擇最好的屬性的能力
什麼時候使用決策樹
神經網路
神經元模型
生物模型
人工神經元
神經網模型
網的拓撲結構:層次(前饋,反饋);全連通
學習方法:有教員的(出入均知道);無教員的(輸出不知道)
運行機制:同步;非同步
神經網路的基本特點
大量簡單節點的復雜連接;高度並行處理;分布式存儲,信息存在整個網中,用權值體現出來,有聯想能力,可以從一個不完整的信息恢復出完整信息;自組織、自學習。
六種常用於模式識別的神經網路分類器
Hopfield Net
Harmming Net
Carpenter/Grossberg 分類器
單層感知網
多層感知網
Kohonen的自組織特性圖
『貳』 用於數據挖掘的分類演算法有哪些,各有何優劣
C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法.
The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化
4.The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5.最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
『叄』 數據挖掘的經典演算法有哪些
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。
4. The Apriori algorithm
Apriori演算法,它是一種最具影響力的挖掘布爾關聯規則頻繁項集的演算法。它的演算法核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
關於數據挖掘的經典演算法有哪些,該如何下手的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
『肆』 數據挖掘的常用演算法有哪幾類
有十大經典演算法
下面是網站給出的答案:
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。
10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。
『伍』 數據挖掘與推薦系統是什麼關系
推薦系統屬於數據挖掘的應用。
數據挖掘其中很多的原理,簡單的說推薦系統就是給用戶推薦有關聯的數據。比如說關聯分析、比如說分類預測等,通過這些數據挖掘原理 可以找出某些規則,然後基於這些規則就可以進行相關的推薦設置比如說通過關聯規則發現很多買市場營銷書籍的人,也買了 定位 的書,那一個新的顧客,如果他買了市場營銷的書,則系統就會給其推薦 定位這本書。 這就是推薦系統。
關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生具備從數據治理根源出發的思維,通過數字化工作方法來探查業務問題,通過近因分析、宏觀根因分析等手段,再選擇業務流程優化工具還是演算法工具,而非「遇到問題調演算法包」。真正理解商業思維,項目思維,能夠遇到問題解決問題。點擊預約免費試聽課
『陸』 關於數據挖掘,比較經典的演算法書籍(詳細介紹演算法原理的)
還是最經典的那本
《數據挖掘:概念與技術》 韓加偉的
『柒』 數據挖掘十大經典演算法及各自優勢
數據挖掘十大經典演算法及各自優勢
不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;2) 在樹構造過程中進行剪枝;3) 能夠完成對連續屬性的離散化處理;4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。
以上是小編為大家分享的關於數據挖掘十大經典演算法及各自優勢的相關內容,更多信息可以關注環球青藤分享更多干貨
『捌』 常用的數據挖掘演算法有哪幾類
常用的數據挖掘演算法分為以下幾類:神經網路,遺傳演算法,回歸演算法,聚類分析演算法,貝耶斯演算法。
目前已經進入大數據的時代,所以數據挖掘和大數據分析的就業前景非常好,學好大數據分析和數據挖掘可以在各個領域中發揮自己的價值;同時,大數據分析並不是一蹴而就的事情,而是需要你日積月累的數據處理經驗,不是會被輕易替代的。一家公司的各項工作,基本上都都用數據體現出來,一位高級的數據分析師職位通常是數據職能架構中領航者,擁有較高的分析和思辨能力,對於業務的理解到位,並且深度知曉公司的管理和商業行為,他可以負責一個子產品或模塊級別的項目,帶領團隊來全面解決問題,把控手下數據分析師的工作質量。
想要了解更多有關數據挖掘演算法的信息,可以了解一下CDA數據分析師的課程。課程教你學企業需要的敏捷演算法建模能力,可以學到前沿且實用的技術,挖掘數據的魅力;教你用可落地、易操作的數據科學思維和技術模板構建出優秀模型,只教實用干貨,以專精技術能力提升業務效果與效率。點擊預約免費試聽課。
『玖』 數據挖掘常用演算法有哪些
1、 樸素貝葉斯
樸素貝葉斯(NB)屬於生成式模型(即需要計算特徵與類的聯合概率分布),計算過程非常簡單,只是做了一堆計數。NB有一個條件獨立性假設,即在類已知的條件下,各個特徵之間的分布是獨立的。這樣樸素貝葉斯分類器的收斂速度將快於判別模型,如邏輯回歸,所以只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中的R來講,就是特徵冗餘。
2、邏輯回歸(logistic regression)
邏輯回歸是一個分類方法,屬於判別式模型,有很多正則化模型的方法(L0,L1,L2),而且不必像在用樸素貝葉斯那樣擔心特徵是否相關。與決策樹與SVM相比,還會得到一個不錯的概率解釋,甚至可以輕松地利用新數據來更新模型(使用在線梯度下降演算法online gradient descent)。如果需要一個概率架構(比如,簡單地調節分類閾值,指明不確定性,或者是要獲得置信區間),或者希望以後將更多的訓練數據快速整合到模型中去,那麼可以使用它。
3、 線性回歸
線性回歸是用於回歸的,而不像Logistic回歸是用於分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數進行優化。
4、最近鄰演算法——KNN
KNN即最近鄰演算法,其主要過程為:計算訓練樣本和測試樣本中每個樣本點的距離(常見的距離度量有歐式距離,馬氏距離等);對上面所有的距離值進行排序;選前k個最小距離的樣本;根據這k個樣本的標簽進行投票,得到最後的分類類別;如何選擇一個最佳的K值,這取決於數據。
5、決策樹
決策樹中很重要的一點就是選擇一個屬性進行分枝,因此要注意一下信息增益的計算公式,並深入理解它。
6、SVM支持向量機
高准確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在動輒超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。
『拾』 數據挖掘演算法有哪些
統計和可視化要想建立一個好的預言模型,你必須了解自己的數據。最基本的方法是計算各種統計變數(平均值、方差等)和察看數據的分布情況。你也可以用數據透視表察看多維數據。數據的種類可分為連續的,有一個用數字表示的值(比如銷售量)或離散的,分成一個個的類別(如紅、綠、藍)。離散數據可以進一步分為可排序的,數據間可以比較大小(如,高、中、低)和標稱的,不可排序(如郵政編碼)。圖形和可視化工具在數據准備階段尤其重要,它能讓你快速直觀的分析數據,而不是給你枯燥乏味的文本和數字。它不僅讓你看到整個森林,還允許你拉近每一棵樹來察看細節。在圖形模式下人們很容易找到數據中可能存在的模式、關系、異常等,直接看數字則很難。可視化工具的問題是模型可能有很多維或變數,但是我們只能在2維的屏幕或紙上展示它。比如,我們可能要看的是信用風險與年齡、性別、婚姻狀況、參加工作時間的關系。因此,可視化工具必須用比較巧妙的方法在兩維空間內展示n維空間的數據。雖然目前有了一些這樣的工具,但它們都要用戶「訓練」過他們的眼睛後才能理解圖中畫的到底是什麼東西。對於眼睛有色盲或空間感不強的人,在使用這些工具時可能會遇到困難。聚集(分群)聚集是把整個資料庫分成不同的群組。它的目的是要群與群之間差別很明顯,而同一個群之間的數據盡量相似。與分類不同(見後面的預測型數據挖掘),在開始聚集之前你不知道要把數據分成幾組,也不知道怎麼分(依照哪幾個變數)。因此在聚集之後要有一個對業務很熟悉的人來解釋這樣分群的意義。很多情況下一次聚集你得到的分群對你的業務來說可能並不好,這時你需要刪除或增加變數以影響分群的方式,經過幾次反復之後才能最終得到一個理想的結果。神經元網路和K-均值是比較常用的聚集演算法。不要把聚集與分類混淆起來。在分類之前,你已經知道要把數據分成哪幾類,每個類的性質是什麼,聚集則恰恰相反。關聯分析關聯分析是尋找資料庫中值的相關性。兩種常用的技術是關聯規則和序列模式。關聯規則是尋找在同一個事件中出現的不同項的相關性,比如在一次購買活動中所買不同商品的相關性。序列模式與此類似,他尋找的是事件之間時間上的相關性,如對股票漲跌的分析。關聯規則可記為A==>B,A稱為前提和左部(LHS),B稱為後續或右部(RHS)。如關聯規則「買錘子的人也會買釘子」,左部是「買錘子」,右部是「買釘子」。要計算包含某個特定項或幾個項的事務在資料庫中出現的概率只要在資料庫中直接統計即可。某一特定關聯(「錘子和釘子」)在資料庫中出現的頻率稱為支持度。比如在總共1000個事務中有15個事務同時包含了「錘子和釘子」,則此關聯的支持度為1.5%。非常低的支持度(比如1百萬個事務中只有一個)可能意味著此關聯不是很重要,或出現了錯誤數據(如,「男性和懷孕」)。要找到有意義的規則,我們還要考察規則中項及其組合出現的相對頻率。當已有A時,B發生的概率是多少?也即概率論中的條件概率。回到我們的例子,也就是問「當一個人已經買了錘子,那他有多大的可能也會買釘子?」這個條件概率在數據挖掘中也稱為可信度,計算方法是求百分比:(A與B同時出現的頻率)/(A出現的頻率)。讓我們用一個例子更詳細的解釋這些概念: 總交易筆數(事務數):1,000包含「錘子」:50包含「釘子」:80包含「鉗子」:20包含「錘子」和「釘子」:15包含「鉗子」和「釘子」:10包含「錘子」和「鉗子」:10包含「錘子」、「鉗子」和「釘子」:5 則可以計算出: 「錘子和釘子」的支持度=1.5%(15/1,000)「錘子、釘子和鉗子」的支持度=0.5%(5/1,000)「錘子==>釘子」的可信度=30%(15/50)「釘子==>錘子」的可信度=19%(15/80)「錘子和釘子==>鉗子」的可信度=33%(5/15)「鉗子==>錘子和釘子」的可信度=25%(5/20)