Ⅰ 遺傳演算法都能幹啥啊
遺傳演算法的應用有很多,一般用於解決工程優化問題。像選址問題、排班問題、路線優化、參數優化、函數求極值等等
Ⅱ 為什麼遺傳演算法能被廣泛的應用到各個領域
遺傳演算法在很多領域都得到應用;從神經網路研究的角度上考慮,最關心的是遺傳演算法在神經網路的應用。在遺傳演算法應用中,應先明確其特點和關鍵問題,才能對這種演算法深入了解,靈活應用,以及進一步研究開發。一、遺傳演算法的特點 1.遺傳演算法從問題解的中集開始嫂索,而不是從單個解開始。這是遺傳演算法與傳統優化演算法的極大區別。傳統優化演算法是從單個初始值迭代求最優解的;容易誤入局部最優解。遺傳演算法從串集開始搜索,復蓋面大,利於全局擇優。 2.遺傳演算法求解時使用特定問題的信息極少,容易形成通用演算法程序。由於遺傳演算法使用適應值這一信息進行搜索,並不需要問題導數等與問題直接相關的信息。遺傳演算法只需適應值和串編碼等通用信息,故幾乎可處理任何問題。 3.遺傳演算法有極強的容錯能力遺傳演算法的初始串集本身就帶有大量與最優解甚遠的信息;通過選擇、交叉、變異操作能迅速排除與最優解相差極大的串;這是一個強烈的濾波過程;並且是一個並行濾波機制。故而,遺傳演算法有很高的容錯能力。 4.遺傳演算法中的選擇、交叉和變異都是隨機操作,而不是確定的精確規則。這說明遺傳演算法是採用隨機方法進行最優解搜索,選擇體現了向最優解迫近,交叉體現了最優解的產生,變異體現了全局最優解的復蓋。 5.遺傳演算法具有隱含的並行性
Ⅲ 遺傳演算法有哪些方向
遺傳演算法研究方向主要有以下幾個方面:
1. 遺傳演算法基礎理論研究
在遺傳演算法中,群體規模和遺傳運算元的控制參數的選取 是必要的試驗參數。
遺傳演算法的收斂也是遺傳演算法基礎理論研究方向之一。
2. 遺傳演算法的分類系統
分類系統屬於基於遺傳演算法的機器學習中的一類,包括一個簡單 的基於串規則的並行生成子系統、規則評價子系統和遺傳演算法子系統 。
分類系統被人們越來越多地應用在科學、工程和經濟領域中,是目 前遺傳演算法研究中一個十分活躍的領域。
3. 分布並行遺傳演算法
分布並行遺傳算 法的研究表明,只要通過保持多個群體和恰當控制群體間的相互作用 來模擬並行執行過程,即使不使用並行計算機,也能提高演算法的執行效 率。
4. 遺傳進化演算法
模擬自然進化過程可以產生魯棒的計算機演算法--進化演算法。其餘兩種演算法是進化規劃和進化策略 。
5. 遺傳神經網路
包括連接權、網路結構和學習規則的進化。
Ⅳ 遺傳演算法的優缺點
優點:
1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。
另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。
2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。
3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。
另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。
4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。
5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。
缺點:
1、遺傳演算法在進行編碼時容易出現不規范不準確的問題。
2、由於單一的遺傳演算法編碼不能全面將優化問題的約束表示出來,因此需要考慮對不可行解採用閾值,進而增加了工作量和求解時間。
3、遺傳演算法效率通常低於其他傳統的優化方法。
4、遺傳演算法容易出現過早收斂的問題。
(4)遺傳演算法的作用領域擴展閱讀
遺傳演算法的機理相對復雜,在Matlab中已經由封裝好的工具箱命令,通過調用就能夠十分方便的使用遺傳演算法。
函數ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最優解,fval是最優值,@fitnessness是目標函數,nvars是自變數個數,options是其他屬性設置。系統默認求最小值,所以在求最大值時應在寫函數文檔時加負號。
為了設置options,需要用到下面這個函數:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通過這個函數就能夠實現對部分遺傳演算法的參數的設置。
Ⅳ 遺傳演算法的核心是什麼!
遺傳操作的交叉運算元。
在自然界生物進化過程中起核心作用的是生物遺傳基因的重組(加上變異)。同樣,遺傳演算法中起核心作用的是遺傳操作的交叉運算元。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。通過交叉,遺傳演算法的搜索能力得以飛躍提高。
交叉運算元根據交叉率將種群中的兩個個體隨機地交換某些基因,能夠產生新的基因組合,期望將有益基因組合在一起。
(5)遺傳演算法的作用領域擴展閱讀
評估編碼策略常採用以下3個規范:
a)完備性(completeness):問題空間中的所有點(候選解)都能作為GA空間中的點(染色體)表現。
b)健全性(soundness): GA空間中的染色體能對應所有問題空間中的候選解。
c)非冗餘性(nonrendancy):染色體和候選解一一對應。
目前的幾種常用的編碼技術有二進制編碼,浮點數編碼,字元編碼,變成編碼等。
而二進制編碼是目前遺傳演算法中最常用的編碼方法。即是由二進制字元集{0,1}產生通常的0,1字元串來表示問題空間的候選解。
Ⅵ 遺傳演算法具體應用
1、函數優化
函數優化是遺傳演算法的經典應用領域,也是遺傳演算法進行性能評價的常用算例,許多人構造出了各種各樣復雜形式的測試函數:連續函數和離散函數、凸函數和凹函數、低維函數和高維函數、單峰函數和多峰函數等。
2、組合優化
隨著問題規模的增大,組合優化問題的搜索空間也急劇增大,有時在目前的計算上用枚舉法很難求出最優解。對這類復雜的問題,人們已經意識到應把主要精力放在尋求滿意解上,而遺傳演算法是尋求這種滿意解的最佳工具之一。
此外,GA也在生產調度問題、自動控制、機器人學、圖象處理、人工生命、遺傳編碼和機器學習等方面獲得了廣泛的運用。
3、車間調度
車間調度問題是一個典型的NP-Hard問題,遺傳演算法作為一種經典的智能演算法廣泛用於車間調度中,很多學者都致力於用遺傳演算法解決車間調度問題,現今也取得了十分豐碩的成果。
從最初的傳統車間調度(JSP)問題到柔性作業車間調度問題(FJSP),遺傳演算法都有優異的表現,在很多算例中都得到了最優或近優解。
(6)遺傳演算法的作用領域擴展閱讀:
遺傳演算法的缺點
1、編碼不規范及編碼存在表示的不準確性。
2、單一的遺傳演算法編碼不能全面地將優化問題的約束表示出來。考慮約束的一個方法就是對不可行解採用閾值,這樣,計算的時間必然增加。
3、遺傳演算法通常的效率比其他傳統的優化方法低。
4、遺傳演算法容易過早收斂。
5、遺傳演算法對演算法的精度、可行度、計算復雜性等方面,還沒有有效的定量分析方法。
Ⅶ 什麼叫遺傳演算法,遺傳演算法有什麼用希望通俗一點兒
首先有個很神奇的現象:人類以及動物的進化都是朝著好的方向發展,雖然有的往壞的方向發展了,但是總體肯定是往好的方向發展。這看似不奇怪,但是我們知道,人類的基因組合是隨機的,沒有上帝約束。這種隨機過程的結果卻是一致的!!!!!我們的遺傳演算法就是從這里得到啟發!比如我要求y=x1+x2的最大值,兩個變數,我不用傳統的數學方法,就用幼兒園的方法,把所有可能取值帶進去算,然後找出最大的就行了!但是,有時候取值是連續的,沒關系!使其離散化,就像把模擬信號化成數字信號一樣!還有個問題,如果取值太多咋辦?這就是遺傳演算法的精髓!
首先,我不用取所有可能取值,我只取幾十個或者幾百個(自己定),然後進行處理,怎樣處理呢?讓我們回到剛開始的人類進化問題,雖然沒有上帝的幫忙,但是我們知道,自然界遵循優勝劣汰的發賊,遵循交叉變異的法則,雖然不能數字化,但是這是個趨勢!我們就是把這種法則數學化!所取的幾十個值我要剩下哪些?要拋棄哪些?要處理哪些?這都要我們自己選擇,肯定是選擇最合適的取值留下,經過一系列的處理,就生成了新的群體,然後再處理,自己約定處理到第幾次就可以了,取出現過的最大值
不用擔心取到的是不是最大值,因為數學上已經有了證明,這種方法是收斂的,概率是1,所以盡管放心的做,具體的做法要參考相關書籍,不難的。
遺傳演算法的最大用處就是解決數學理論不能解決的問題!比如路徑規劃,調度問題……
Ⅷ TSP遺傳演算法的作用是什麼
你是問為什麼要用遺傳演算法求解TSP?那麼答案就是,TSP問題如果用窮舉的方法搜索,會由於可行解太多而無法在有效時間之內完成,而遺傳演算法則是不使用窮舉的方法之一。
如果你是想問為什麼要求解TSP,那麼就是因為兩個原因,一個是TSP本身是實際問題抽象而來的,而且和tsp近似的還有很多不同的最短路徑問題,都是實際生活中會出現的,不管是規劃人的路徑還是機械手臂的路徑,都會用到。第二個原因是tsp是NP完全問題,和很多其他問題一樣,都是NP完全的,這就意味著,只要其中一個問題解決了,另外的NP完全問題也能夠解決,所以研究它也具有理論價值。