導航:首頁 > 源碼編譯 > A星演算法最優解輸出坐標

A星演算法最優解輸出坐標

發布時間:2022-04-05 03:50:13

A. 游戲中的A星演算法怎麼寫

首先A星演算法佔內存和CPU簡直要命,之前用AS3寫的代碼90*90格僅6個敵人每次同時尋路都得卡上幾秒,還經常找不到路,反正我目前還沒想到好的優化方法。

B. 跪求 廣度,深度,A星相關演算法解決問題

八皇後是經典的回溯問題。
說一下自己的編程思想:
定義一個8×8的棋盤:int graph[8][8];初始時所有值均為0
檢查當前位置能否放置皇後,假定下標為i, j;
bool check(int i, int j)
{
判斷當前位置所在行和列是否有皇後,若有則返回false, 否則返回true;
}
然後就是搜索了.這里選擇按行進行深度優先搜索。
dfs(int i, int j)
{
if(i >= 8)
{
已經到最後一層,可以輸出結果。graph中所有標志1的地方
即為皇後所在位置。
return;
}
graph[i][j] = 1; // 在此處放置一個皇後
for(int k = 0; k < 8; k++)
if(check(i+1, k)) // 說明找到一個合適的位置
dfs(i+1, k); //向下一層移動
graph[i][j] = 0;// 回溯
}

C. lua語言a星尋路演算法路徑怎麼平滑

在項目中遇到了自動尋路的需求,於是決定開始學習一下A星,對於A星我也沒有深究,只能說是勉強搞定了需求,在這和大家分享一下,相互進步,

A星有個公式 f(x) = g(x) + h(x)
,搞清楚這個公式就好辦了,f(x)就是當前位置到下一個位置的總價值,g(x)表示實際價,這是說這一部分代價是確定的,h(x)表示估價值,就是說我
從下一個位置到到終點的代價是未知的,所以叫估價值,如圖中所示,黑色格子表示當前位置,綠色格子表示下一步可能到達的位置,即上、下、左、右這幾個方
向,紅色格子表示終點,褐色表示障礙物,現在要從黑色格子到達紅色格子,那麼黑色格子的下一步肯定是綠色格子當中的一個,黑色格子到綠色格子之間是相挨著
的,所以我們可以很明確的知道它的實際代價為1(移動一步的代價)即g(x),綠色格子到紅色格子之間隔著很長的距離,中間還有障礙物,所以這個代價是未
知的,即h(x),所以總的代價就為f(x) = g(x) +
h(x),我們看到周圍有4個綠色的格子,到底走那一步比較好呢,所以我們要把這4個格子的f(x)值都求出來,然後進行排序,選擇f(x)值最小的,即
總代價最少的那個格子,以此方法繼續下去,直到到達終點 或者 地圖上沒有綠色格子了

下面來看一下這個工具類,g(x)和h(x)要選的比較合適,一般就是採用的曼哈頓演算法,即兩點在x方向和y方向的距離之和,
-- Filename: PathUtil.lua
-- Author: bzx
-- Date: 2014-07-01
-- Purpose: 尋路

mole("PathUtil", package.seeall)

local _map_data -- 地圖數據
local _open_list -- 開放節點
local _open_map -- 開放節點,為了提高性能而加
local _close_map -- 關閉節點
local _deleget -- 代理
local _dest_point -- 目標點
local _start_point -- 起點
local _path -- 路徑

-- 尋找路徑
--[[
deleget = {
g = function(point1, point2)
-- add your code
-- 返回點point1到點point2的實際代價
end
h = function(point1, point2)
-- add your code
-- 返回點point1到點point2的估算代價
end
getValue = function(j, i)
-- 返回地圖中第i行,第j列的數據 1為障礙物,0為非障礙物
end
width -- 地圖寬度
height -- 地圖高度
}
--]]
function findPath(deleget, start_point, dest_point)
_deleget = deleget
_dest_point = dest_point
_start_point = start_point
init()
while not table.isEmpty(_open_list) do
local cur_point = _open_list[1]
table.remove(_open_list, 1)
_open_map[cur_point.key] = nil
if isEqual(cur_point, dest_point) then
return makePath(cur_point)
else
_close_map[cur_point.key] = cur_point
local next_points = getNextPoints(cur_point)
for i = 1, #next_points do
local next_point = next_points[i]
if _open_map[next_point.key] == nil and _close_map[next_point.key] == nil and isObstacle(next_point) == false then
_open_map[next_point.key] = next_point
table.insert(_open_list, next_point)
end
end
table.sort(_open_list, compareF)
end
end
return nil
end

function init()
_open_list = {}
_open_map = {}
_close_map = {}
_path = {}
_map_data = {}
for i = 1, _deleget.height do
_map_data[i] = {}
for j = 1, _deleget.width do
local value = _deleget.getValue(j, i)
_map_data[i][j] = value
end
end
_open_map[getKey(_start_point)] = _start_point
table.insert(_open_list, _start_point)
end

function createPoint(x, y)
local point = {
["x"] = x,
["y"] = y,
["last"] = nil,
["g_value"] = 0,
["h_value"] = 0,
["f_value"] = 0
}
point["key"] = getKey(point)
return point
end

-- 得到下一個可以移動的點
-- @param point 當前所在點
function getNextPoints(point)
local next_points = {}
for i = 1, #_deleget.directions do
local offset = _deleget.directions[i]
local next_point = createPoint(point.x + offset[1], point.y + offset[2])
next_point["last"] = point
if next_point.x >= 1 and next_point.x <= _deleget.width and next_point.y >= 1 and next_point.y <= _deleget.height then
next_point["g_value"] = _deleget.g(point, next_point)
next_point["h_value"] = _deleget.h(point, _dest_point)--math.abs(next_points.x - _dest_point.x) + math.abs(next_points.y - _dest_point.y)
next_point["f_value"] = next_point.g_value + next_point.h_value
table.insert(next_points, next_point)
end
end
return next_points
end

-- 得到路徑
-- @param end_point 目標點
function makePath(end_point)
_path = {}
local point = end_point
while point.last ~= nil do
table.insert(_path, createPoint(point.x, point.y))
point = point.last
end
local start_point = point
table.insert(_path, start_point)
return _path
end

-- 兩個點的代價比較器
function compareF(point1, point2)
return point1.f_value < point2.f_value
end

-- 是否是障礙物
function isObstacle(point)
local value = _map_data[point.y][point.x]
if value == 1 then
return true
end
return false
end

-- 兩個點是否是同一個點
function isEqual(point1, point2)
return point1.key == point2.key
end

-- 根據點得到點的key
function getKey(point)
local key = string.format("%d,%d", point.x, point.y)
return key
end

下面是工具類PathUtil的用法
local deleget = {}
deleget.g = function(point1, point2)
return math.abs(point1.x - point2.x) + math.abs(point1.y - point2.y)
end
deleget.h = deleget.g
deleget.getValue = function(j, i)
local index = FindTreasureUtil.getIndex(j, i)
local map_info = _map_info.map[index]
if map_info.display == 0 and map_info.eid ~= 1 then
return 0
end
return 1
end
deleget.directions = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}} -- 左,上,下,右
deleget.width = _cols
deleget.height = _rows

local dest_row, dest_col = FindTreasureUtil.getMapPosition(tag)
local dest_point = PathUtil.createPoint(dest_col, dest_row)
local start_row, start_col = FindTreasureUtil.getMapPosition(_player_index)
local start_point = PathUtil.createPoint(start_col, start_row)
_path = PathUtil.findPath(deleget, start_point, dest_point)

_path就是我們找到的路徑,起點為最後一個元素,終點為第一個元素

D. 如何實現A星尋路演算法 Cocos2d-x 3.0 beta2

操作步驟如下:一win764位系統搭建android開發環境需要的軟體1.cocos2d-x3.3beta02.VisualStudio2012/2013安裝完占硬碟空間近10G,VisualStudio2012/2013是需要注冊碼。4.AndroidSDK(其中包括Eclipse)5.AndroidNDK6.Ant7.Python2.7.8不要下載3.x以上版本二軟體安裝安裝軟體時不要安裝在C盤。1.VisualStudio2012/2013VisualStudio2012/2013安裝方法像安裝其他軟體一樣,一路下一步就可以,但是注意安裝前IE瀏覽器版本必須是IE10以上版本。2.Python2.7.8安裝方法同上,但是不要安裝在C盤。3.JAVAJDKJAVAJDK默認安裝,這個可以安裝在C盤。4.cocos2d-x3.3beta0 AndroidSDK AndroidNDK Ant這些軟體都是解壓包,不需要安裝,解壓就可以。三cocos2d-x3.3beta0環境調試1.打開cocos2d-x3.3beta0所在的文件[attachment=78978]按Shift+滑鼠右鍵,點在此次打開命令窗口。現在可以看見畫黃線的是軟體變數名稱,紅線是變數路徑。正常的是4個變數名稱4條變數路徑,如果不是就需要手動添加,方法如下:1.右鍵計算機(XP叫我的電腦,win7叫計算機)------2.屬性------3.高級系統設置------4.環境變數------5.新建6.在變數名中添加缺少的變數名,在變數值中添加路徑。如:變數名NDK_ROOT 變數值D:\android-ndk-r10b軟體名稱 變數名cocos2d-x3.3beta0 COCOS_CONSOLE_ROOTAndroidSDK ANDROID_SDK_ROOTAndroidNDK NDK_ROOTAnt ANT_ROOT再次.打開cocos2d-x3.3beta0所在的文件,按Shift+滑鼠右鍵,點在此次打開命令窗口。如果看到4個變數名稱4條變數路徑就說明變數調試正確。四創建項目1.打開cocos2d-x3.3beta0所在的文件,按Shift+滑鼠右鍵,點在此次打開命令窗口。2.鍵入setup.py回車3.鍵入cocosnew項目名稱-p包名-l語言cpp-d項目路徑如:cocosnewtest-ptiaoshi-lcpp-d/test/android/cheshi會在存放cocos2d-x3.3beta0的盤符里出現一個名稱為tset的文件,打開文件-----proj.win32-----TSET.sin在VisualStudio2013中點 調試------開始執行不調試

E. JAVA的A星演算法問題

class AllShunXu { static String str = "12345"; static char[] a = str.toCharArray(); static int n = 5; static void swap(int arg1, int arg2){ char temp; temp = a[arg1]; a[arg1] = a[arg2]; a[arg2] = temp; } static void sort(int index){ int i; if (index == n){ for (i = 0; i < n; i++){ System.out.print(a[i]); } System.out.println(""); return; } for (i = index; i < n; i++){ swap(index,i); sort(index + 1); swap(index,i); } } public static void main(String args[]){ for(int s =0;s<n;s++){ sort(s); } }}

F. 如何基於Cocos2d-x v3.x實現A星尋路演算法

實現A星演算法
根據演算法,第一步是添加當前坐標到open列表。還需要三個輔助方法:
- 一個方法用來插入一個ShortestPathStep對象到適當的位置(有序的F值)
- 一個方法用來計算從一個方塊到相鄰方塊的移動數值
- 一個方法是根據"曼哈頓距離"演算法,計算方塊的H值

打開CatSprite.cpp文件,添加如下方法:

void CatSprite::insertInOpenSteps(CatSprite::ShortestPathStep *step)
{
int stepFScore = step->getFScore();
ssize_t count = _spOpenSteps.size();
ssize_t i = 0;
for (; i < count; ++i)
{
if (stepFScore <= _spOpenSteps.at(i)->getFScore())
{
break;
}
}
_spOpenSteps.insert(i, step);
}
int CatSprite::computeHScoreFromCoordToCoord(const Point &fromCoord, const Point &toCoord)
{
// 這里使用曼哈頓方法,計算從當前步驟到達目標步驟,在水平和垂直方向總的步數
// 忽略了可能在路上的各種障礙
return abs(toCoord.x - fromCoord.x) + abs(toCoord.y - fromCoord.y);
}
int CatSprite::(const ShortestPathStep *fromStep, const ShortestPathStep *toStep)
{
// 因為不能斜著走,而且由於地形就是可行走和不可行走的成本都是一樣的
// 如果能夠對角移動,或者有沼澤、山丘等等,那麼它必須是不同的
return 1;
}

接下來,需要一個方法去獲取給定方塊的所有相鄰可行走方塊。因為在這個游戲中,HelloWorld管理著地圖,所以在那裡添加方法。打開HelloWorldScene.cpp文件,添加如下方法:

PointArray *HelloWorld::(const Point &tileCoord) const
{
PointArray *tmp = PointArray::create(4);
// 上
Point p(tileCoord.x, tileCoord.y - 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 左
p.setPoint(tileCoord.x - 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 下
p.setPoint(tileCoord.x, tileCoord.y + 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 右
p.setPoint(tileCoord.x + 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
return tmp;
}

可以繼續CatSprite.cpp中的moveToward方法了,在moveToward方法的後面,添加如下代碼:

bool pathFound = false;
_spOpenSteps.clear();
_spClosedSteps.clear();
// 首先,添加貓的方塊坐標到open列表
this->insertInOpenSteps(ShortestPathStep::createWithPosition(fromTileCoord));
do
{
// 得到最小的F值步驟
// 因為是有序列表,第一個步驟總是最小的F值
ShortestPathStep *currentStep = _spOpenSteps.at(0);
// 添加當前步驟到closed列表
_spClosedSteps.pushBack(currentStep);
// 將它從open列表裡面移除
// 需要注意的是,如果想要先從open列表裡面移除,應小心對象的內存
_spOpenSteps.erase(0);
// 如果當前步驟是目標方塊坐標,那麼就完成了
if (currentStep->getPosition() == toTileCoord)
{
pathFound = true;
ShortestPathStep *tmpStep = currentStep;
CCLOG("PATH FOUND :");
do
{
CCLOG("%s", tmpStep->getDescription().c_str());
tmpStep = tmpStep->getParent(); // 倒退
} while (tmpStep); // 直到沒有上一步
_spOpenSteps.clear();
_spClosedSteps.clear();
break;
}
// 得到當前步驟的相鄰方塊坐標
PointArray *adjSteps = _layer->(currentStep->getPosition());
for (ssize_t i = 0; i < adjSteps->count(); ++i)
{
ShortestPathStep *step = ShortestPathStep::createWithPosition(adjSteps->getControlPointAtIndex(i));
// 檢查步驟是不是已經在closed列表
if (this->getStepIndex(_spClosedSteps, step) != -1)
{
continue;
}
// 計算從當前步驟到此步驟的成本
int moveCost = this->(currentStep, step);
// 檢查此步驟是否已經在open列表
ssize_t index = this->getStepIndex(_spOpenSteps, step);
// 不在open列表,添加它
if (index == -1)
{
// 設置當前步驟作為上一步操作
step->setParent(currentStep);
// G值等同於上一步的G值 + 從上一步到這里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// H值即是從此步驟到目標方塊坐標的移動量估算值
step->setHScore(this->computeHScoreFromCoordToCoord(step->getPosition(), toTileCoord));
// 按序添加到open列表
this->insertInOpenSteps(step);
}
else
{
// 獲取舊的步驟,其值已經計算過
step = _spOpenSteps.at(index);
// 檢查G值是否低於當前步驟到此步驟的值
if ((currentStep->getGScore() + moveCost) < step->getGScore())
{
// G值等同於上一步的G值 + 從上一步到這里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// 因為G值改變了,F值也會跟著改變
// 所以為了保持open列表有序,需要將此步驟移除,再重新按序插入
// 在移除之前,需要先保持引用
step->retain();
// 現在可以放心移除,不用擔心被釋放
_spOpenSteps.erase(index);
// 重新按序插入
this->insertInOpenSteps(step);
// 現在可以釋放它了,因為open列表應該持有它
step->release();
}
}
}
} while (_spOpenSteps.size() > 0);
if (!pathFound)
{
SimpleAudioEngine::getInstance()->playEffect("hitWall.wav");
}

添加以下方法:

ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}

G. 按鍵精靈a星演算法尋路怎麼製作地圖

你可以查找有關a星演算法走路,一步步去學,別人也不知道你說的是什麼地圖,怎麼判斷

H. 如何在使用Cocos2D中實現A星(A*)尋路演算法

實現A星演算法
根據演算法,第一步是添加當前坐標到open列表。還需要三個輔助方法:
- 一個方法用來插入一個ShortestPathStep對象到適當的位置(有序的F值)
- 一個方法用來計算從一個方塊到相鄰方塊的移動數值
- 一個方法是根據"曼哈頓距離"演算法,計算方塊的H值。
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}

I. 如何基於cocos2dx3.x實現A星尋路演算法

實現A星演算法 根據演算法,第一步是添加當前坐標到open列表。還需要三個輔助方法: - 一個方法用來插入一個ShortestPathStep對象到適當的位置(有序的F值) - 一個方法用來計算從一個方塊到相鄰方塊的移動數值 - 一個方法是根據"曼哈頓距離"演算法

J. A星尋路演算法和Unity自帶的尋路相比有什麼優勢

並沒一種尋路適合所有場合,選擇都是基於需求而定的。

1. A* 演算法與貪婪演算法不一樣,貪婪演算法適合動態規劃,尋找局部最優解,不保證最優解。
A*是靜態網格中求解最短路最有效的方法。也是耗時的演算法,不宜尋路頻繁的場合。一般來說適合需求精確的場合。
與啟發式的搜索一樣,能夠根據改變網格密度、網格耗散來進行調整精確度。
使用的地方:
a. 策略游戲的策略搜索
b. 方塊格子游戲中的格子尋路

2. Unity 自帶的導航網格系統
Unity 內置了NavMesh導航網格系統,一般來說導航網格演算法大多是「拐角點演算法」。
效率是比較高的,但是不保證最優解演算法。
使用的地方:
a.游戲場景的怪物尋路
b.動態規避障礙

閱讀全文

與A星演算法最優解輸出坐標相關的資料

熱點內容
如何將數據傳到伺服器查找伺服器讀取數據 瀏覽:1002
怎麼知道伺服器上是否在運行代碼 瀏覽:854
單片機多聯機 瀏覽:214
知乎軟體源碼 瀏覽:295
解壓音頻最新消息 瀏覽:115
如何弄崩一個mc伺服器 瀏覽:136
執行命令怎麼取消 瀏覽:902
美拍app長什麼樣 瀏覽:294
android滾動選擇圖片 瀏覽:484
有什麼畫畫app能把照片放上去畫 瀏覽:395
如何自己架設域名伺服器 瀏覽:311
ktv網站php源碼 瀏覽:957
啟信寶app干什麼的 瀏覽:996
解壓助眠快速采耳 瀏覽:875
手機視頻文字編程軟體 瀏覽:251
畫出圓的命令 瀏覽:842
三星快捷命令怎麼用 瀏覽:451
手機怎麼取消手機加密的密碼 瀏覽:175
別克車機為什麼開放裝app 瀏覽:583
qt做個編譯器 瀏覽:120