㈠ 求數學模型,各種模型;各種演算法
數學建模的十大演算法
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)
㈡ MATLAB的迪傑斯特拉演算法求7個起始點到15個終點的最短路徑!
你對圖論的知識有了解吧~W是關聯矩陣,s和t分別是起始點和終止節點的序號。返回的d為最短的加權路徑長度,p為最優路徑節點的序號向量。注意,這里W矩陣為0的點權值已經自動設為無窮大了。請參考《高等應用數學問題的 MATLAB一書》。我吧程序賦給你。
你做一個M函數用吧。
function [d,path]=dijkstra(W,s,t)
[n,m]=size(W);ix=(W==0);W(ix)=inf;
if n~=m,error('Square W required');end
visited(1:n)=0; dist(1:n)=inf;parent(1:n)=0;dist(s)=0;d=inf;
for i=1:(n-1),%求出每個節點與起始點的關系
ix=(visited==0);vec(1:n)=inf;vec(ix)=dist(ix);
[a,u]=min(vec);visited(u)=1;
for v=1:n,if (W(u,v)+dist(u)<dist(v)),
dist(v)=dist(u)+W(u,v);parent(v)=u;
end;end;end
if parent(t)~=0,path=t;d=dist(t);%回溯最短路徑
while t~=s,p=parent(t);path=[p path];t=p;end;
end;
希望對你有用
㈢ matlab 中使用迪傑斯特拉演算法
上面這個矩陣是帶權鄰接矩陣,可以用它得到無向或有向圖形。要畫出這個圖,還是用軟體較好。