導航:首頁 > 源碼編譯 > 俄羅斯數學演算法vs中國演算法

俄羅斯數學演算法vs中國演算法

發布時間:2024-07-11 12:41:07

① 為什麼中國古代數學會形成演算法思想它對後世的影響如何

數學的發展包括了兩大主要活動:證明定理和創造演算法。定理證明是希臘人首倡,後構成數學發展中演繹傾向的脊樑;演算法創造昌盛於古代和中世紀的中國、印度,形成了數學發展中強烈的演算法傾向。統觀數學的歷史將會發現,數學的發展並非總是演繹傾向獨占鰲頭。在數學史上,演算法傾向與演繹傾向總是交替地取得主導地位。古代巴比倫和埃及式的原始演算法時期,被希臘式的演繹幾何所接替,而在中世紀,希臘數學衰落下去,演算法傾向在中國、印度等東方國度繁榮起來;東方數學在文藝復興前夕通過阿拉伯傳播到歐洲,對近代數學興起產生了深刻影響。事實上,作為近代數學誕生標志的解析幾何與微積分,從思想方法的淵源看都不能說是演繹傾向而是演算法傾向的產物。

從微積分的歷史可以知道,微積分的產生是尋找解決一系列實際問題的普遍演算法的結果6。這些問題包括:決定物體的瞬時速度、求極大值與極小值、求曲線的切線、求物體的重心及引力、面積與體積計算等。從16世紀中開始的100多年間,許多大數學家都致力於獲得解決這些問題的特殊演算法。牛頓與萊布尼茲的功績是在於將這些特殊的演算法統一成兩類基本運算——微分與積分,並進一步指出了它們的互逆關系。無論是牛頓的先驅者還是牛頓本人,他們所使用的演算法都是不嚴格的,都沒有完整的演繹推導。牛頓的流數術在邏輯上的瑕疵更是眾所周知。對當時的學者來說,首要的是找到行之有效的演算法,而不是演算法的證明。這種傾向一直延續到18世紀。18世紀的數學家也往往不管微積分基礎的困難而大膽前進。如泰勒公式,歐拉、伯努利甚至19世紀初傅里葉所發現的三角展開等,都是在很長時期內缺乏嚴格的證明。正如馮·諾伊曼指出的那樣:沒有一個數學家會把這一時期的發展看作是異端邪道;這個時期產生的數學成果被公認為第一流的。並且反過來,如果當時的數學家一定要在有了嚴密的演繹證明之後才承認新演算法的合理性,那就不會有今天的微積分和整個分析大廈了。

現在再來看一看更早的解析幾何的誕生。通常認為,笛卡兒發明解析幾何的基本思想,是用代數方法來解幾何問題。這同歐氏演繹方法已經大相徑庭了。而事實上如果我們去閱讀笛卡兒的原著,就會發現貫穿於其中的徹底的演算法精神。《幾何學》開宗明義就宣稱:「我將毫不猶豫地在幾何學中引進算術的術語,以便使自己變得更加聰明」。眾所周知,笛卡兒的《幾何學》是他的哲學著作《方法論》的附錄。笛卡兒在他另一部生前未正式發表的哲學著作《指導思維的法則》(簡稱《法則》)中曾強烈批判了傳統的主要是希臘的研究方法,認為古希臘人的演繹推理只能用來證明已經知道的事物,「卻不能幫助我們發現未知的事情」。因此他提出「需要一種發現真理的方法」,並稱之為「通用數學」(mathesis universakis)。笛卡兒在《法則》中描述了這種通用數學的藍圖,他提出的大膽計劃,概而言之就是要將一切科學問題轉化為求解代數方程的數學問題:

任何問題→數學問題→代數問題→方程求解而笛卡兒的《幾何學》,正是他上述方案的一個具體實施和示範,解析幾何在整個方案中扮演著重要的工具作用,它將一切幾何問題化為代數問題,這些代數問題則可以用一種簡單的、幾乎自動的或者毋寧說是機械的方法去解決。這與上面介紹的古代中國數學家解決問題的路線可以說是一脈相承。

因此我們完全有理由說,在從文藝復興到17世紀近代數學興起的大潮中,回響著東方數學特別是中國數學的韻律。整個17—18世紀應該看成是尋求無窮小演算法的英雄年代,盡管這一時期的無窮小演算法與中世紀演算法相比有質的飛躍。而從19世紀特別是70年代直到20世紀中,演繹傾向又重新在比希臘幾何高得多的水準上占據了優勢。因此,數學的發展呈現出演算法創造與演繹證明兩大主流交替繁榮、螺旋式上升過程:

演繹傳統——定理證明活動

演算法傳統——演算法創造活動

中國古代數學家對演算法傳統的形成與發展做出了毋容置疑的巨大貢獻。

我們強調中國古代數學的演算法傳統,並不意味中國古代數學中沒有演繹傾向。事實上,在魏晉南北朝時期一些數學家的工作中,已出現具有相當深度的論證思想。如趙爽勾股定理證明、劉徽「陽馬」一種長方錐體體積證明、祖沖之父子對球體積公式的推導等等,均可與古希臘數學家相應的工作媲美。趙爽勾股定理證明示意圖「弦圖」原型,已被採用作2002年國際數學家大會會標。令人迷惑的是,這種論證傾向隨著南北朝的結束,可以說是戛然而止。囿於篇幅和本文重點,對這方面的內容這里不能詳述,有興趣的讀者可參閱參考文獻3。

3 古為今用,創新發展

到了20世紀,至少從中葉開始,電子計算機的出現對數學的發展帶來了深遠影響,並孕育出孤立子理論、混沌動力學、四色定理證明等一系列令人矚目的成就。藉助計算機及有效的演算法猜測發現新事實、歸納證明新定理乃至進行更一般的自動推理……,這一切可以說已揭開了數學史上一個新的演算法繁榮時代的偉大序幕。科學界敏銳的有識之士紛紛預見到數學發展的這一趨勢。在我國,早在上世紀50年代,華羅庚教授就親自領導建立了計算機研製組,為我國計算機科學和數學的發展奠定了基礎。吳文俊教授更是從70年代中開始,毅然由原先從事的拓撲學領域轉向定理機器證明的研究,並開創了現代數學的嶄新領域——數學機械化。被國際上譽為「吳方法」的數學機械化方法已使中國在數學機械化領域處於國際領先地位,而正如吳文俊教授本人所說:「幾何定理證明的機械化問題,從思維到方法,至少在宋元時代就有蛛絲馬跡可尋,」他的工作「主要是受中國古代數學的啟發」。「吳方法」,是中國古代數學演算法化、機械化精髓的發揚光大。

計算機影響下演算法傾向的增長,自然也引起一些外國學者對中國古代數學中演算法傳統的興趣。早在上世紀70年代初,著名的計算機科學家D.E.Knuth就呼籲人們關注古代中國和印度的演算法5。多年來這方面的研究取得了一定進展,但總的來說還亟待加強。眾所周知,中國古代文化包括數學是通過著名的絲綢之路向西方傳播的,而阿拉伯地區是這種文化傳播的重要中轉站。現存有些阿拉伯數學與天文著作中包含有一定的中國數學與天文學知識,如著名的阿爾·卡西《算術之鑰》一書中有相當數量的數學問題顯示出直接或間接的中國來源,而根據阿爾·卡西本人記述,他所工作的天文台中就有不少來自中國的學者。

然而長期以來由於「西方中心論」特別是「希臘中心論」的影響以及語言文字方面的障礙,有關資料還遠遠沒有得到發掘。正是為了充分揭示東方數學與歐洲數學復興的關系,吳文俊教授特意從他榮獲的國家最高科學獎中撥出專款成立了「吳文俊數學與天文絲路基金」,鼓勵支持年輕學者深入開展這方面的研究,這是具有深遠意義之舉。

閱讀全文

與俄羅斯數學演算法vs中國演算法相關的資料

熱點內容
北京回收全新伺服器硬碟雲主機 瀏覽:515
php空間搭建ss 瀏覽:504
phparray轉string 瀏覽:671
powermill編程培訓班 瀏覽:491
pdf與word文檔區別 瀏覽:59
MC你如何將材質包裝進伺服器 瀏覽:701
單片機的外文資料 瀏覽:547
什麼是白盒加密演算法 瀏覽:804
樂書pdf 瀏覽:427
a星尋路演算法在3d中 瀏覽:137
抗震等級不同箍筋加密區范圍不同 瀏覽:471
xshell上傳文件命令 瀏覽:781
優先順序隊列java 瀏覽:156
輕量化騰訊雲伺服器有什麼用 瀏覽:462
編譯原理自編譯語言 瀏覽:425
閑魚app為什麼這么多 瀏覽:692
安卓手機玩游戲不卡怎麼設置 瀏覽:568
編譯鏈接裝載書 瀏覽:539
面試騰訊公司程序員 瀏覽:110
一個字母y是什麼app 瀏覽:144