⑴ 如何基於Cocos2d-x v3.x實現A星尋路演算法
實現A星演算法
根據演算法,第一步是添加當前坐標到open列表。還需要三個輔助方法:
- 一個方法用來插入一個ShortestPathStep對象到適當的位置(有序的F值)
- 一個方法用來計算從一個方塊到相鄰方塊的移動數值
- 一個方法是根據"曼哈頓距離"演算法,計算方塊的H值
打開CatSprite.cpp文件,添加如下方法:
void CatSprite::insertInOpenSteps(CatSprite::ShortestPathStep *step)
{
int stepFScore = step->getFScore();
ssize_t count = _spOpenSteps.size();
ssize_t i = 0;
for (; i < count; ++i)
{
if (stepFScore <= _spOpenSteps.at(i)->getFScore())
{
break;
}
}
_spOpenSteps.insert(i, step);
}
int CatSprite::computeHScoreFromCoordToCoord(const Point &fromCoord, const Point &toCoord)
{
// 這里使用曼哈頓方法,計算從當前步驟到達目標步驟,在水平和垂直方向總的步數
// 忽略了可能在路上的各種障礙
return abs(toCoord.x - fromCoord.x) + abs(toCoord.y - fromCoord.y);
}
int CatSprite::(const ShortestPathStep *fromStep, const ShortestPathStep *toStep)
{
// 因為不能斜著走,而且由於地形就是可行走和不可行走的成本都是一樣的
// 如果能夠對角移動,或者有沼澤、山丘等等,那麼它必須是不同的
return 1;
}
接下來,需要一個方法去獲取給定方塊的所有相鄰可行走方塊。因為在這個游戲中,HelloWorld管理著地圖,所以在那裡添加方法。打開HelloWorldScene.cpp文件,添加如下方法:
PointArray *HelloWorld::(const Point &tileCoord) const
{
PointArray *tmp = PointArray::create(4);
// 上
Point p(tileCoord.x, tileCoord.y - 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 左
p.setPoint(tileCoord.x - 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 下
p.setPoint(tileCoord.x, tileCoord.y + 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 右
p.setPoint(tileCoord.x + 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
return tmp;
}
可以繼續CatSprite.cpp中的moveToward方法了,在moveToward方法的後面,添加如下代碼:
bool pathFound = false;
_spOpenSteps.clear();
_spClosedSteps.clear();
// 首先,添加貓的方塊坐標到open列表
this->insertInOpenSteps(ShortestPathStep::createWithPosition(fromTileCoord));
do
{
// 得到最小的F值步驟
// 因為是有序列表,第一個步驟總是最小的F值
ShortestPathStep *currentStep = _spOpenSteps.at(0);
// 添加當前步驟到closed列表
_spClosedSteps.pushBack(currentStep);
// 將它從open列表裡面移除
// 需要注意的是,如果想要先從open列表裡面移除,應小心對象的內存
_spOpenSteps.erase(0);
// 如果當前步驟是目標方塊坐標,那麼就完成了
if (currentStep->getPosition() == toTileCoord)
{
pathFound = true;
ShortestPathStep *tmpStep = currentStep;
CCLOG("PATH FOUND :");
do
{
CCLOG("%s", tmpStep->getDescription().c_str());
tmpStep = tmpStep->getParent(); // 倒退
} while (tmpStep); // 直到沒有上一步
_spOpenSteps.clear();
_spClosedSteps.clear();
break;
}
// 得到當前步驟的相鄰方塊坐標
PointArray *adjSteps = _layer->(currentStep->getPosition());
for (ssize_t i = 0; i < adjSteps->count(); ++i)
{
ShortestPathStep *step = ShortestPathStep::createWithPosition(adjSteps->getControlPointAtIndex(i));
// 檢查步驟是不是已經在closed列表
if (this->getStepIndex(_spClosedSteps, step) != -1)
{
continue;
}
// 計算從當前步驟到此步驟的成本
int moveCost = this->(currentStep, step);
// 檢查此步驟是否已經在open列表
ssize_t index = this->getStepIndex(_spOpenSteps, step);
// 不在open列表,添加它
if (index == -1)
{
// 設置當前步驟作為上一步操作
step->setParent(currentStep);
// G值等同於上一步的G值 + 從上一步到這里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// H值即是從此步驟到目標方塊坐標的移動量估算值
step->setHScore(this->computeHScoreFromCoordToCoord(step->getPosition(), toTileCoord));
// 按序添加到open列表
this->insertInOpenSteps(step);
}
else
{
// 獲取舊的步驟,其值已經計算過
step = _spOpenSteps.at(index);
// 檢查G值是否低於當前步驟到此步驟的值
if ((currentStep->getGScore() + moveCost) < step->getGScore())
{
// G值等同於上一步的G值 + 從上一步到這里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// 因為G值改變了,F值也會跟著改變
// 所以為了保持open列表有序,需要將此步驟移除,再重新按序插入
// 在移除之前,需要先保持引用
step->retain();
// 現在可以放心移除,不用擔心被釋放
_spOpenSteps.erase(index);
// 重新按序插入
this->insertInOpenSteps(step);
// 現在可以釋放它了,因為open列表應該持有它
step->release();
}
}
}
} while (_spOpenSteps.size() > 0);
if (!pathFound)
{
SimpleAudioEngine::getInstance()->playEffect("hitWall.wav");
}
添加以下方法:
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}
⑵ 排列a的演算法是什麼
計算方法:
(1)排列數公式
排列用符號A(n,m)表示,m≦n。
計算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外規定0!=1,n!表示n(n-1)(n-2)…1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
(2)組合數公式
組合用符號C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
兩個常用的排列基本計數原理及應用:
1、加法原理和分類計數法:
每一類中的每一種方法都可以獨立地完成此任務。兩類不同辦法中的具體方法,互不相同(即分類不重)。完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
2、乘法原理和分步計數法:
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務。各步計數相互獨立。只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。
⑶ 計算機網路的最短路徑演算法有哪些對應哪些協議
用於解決最短路徑問題的演算法被稱做「最短路徑演算法」,有時被簡稱作「路徑演算法」。最常用的路徑演算法有:
Dijkstra演算法、A*演算法、SPFA演算法、Bellman-Ford演算法和Floyd-Warshall演算法,本文主要介紹其中的三種。
最短路徑問題是圖論研究中的一個經典演算法問題,旨在尋找圖(由結點和路徑組成的)中兩結點之間的最短路徑。
演算法具體的形式包括:
確定起點的最短路徑問題:即已知起始結點,求最短路徑的問題。
確定終點的最短路徑問題:與確定起點的問題相反,該問題是已知終結結點,求最短路徑的問題。在無向圖中該問題與確定起點的問題完全等同,在有向圖中該問題等同於把所有路徑方向反轉的確定起點的問題。
確定起點終點的最短路徑問題:即已知起點和終點,求兩結點之間的最短路徑。
全局最短路徑問題:求圖中所有的最短路徑。
Floyd
求多源、無負權邊的最短路。用矩陣記錄圖。時效性較差,時間復雜度O(V^3)。
Floyd-Warshall演算法(Floyd-Warshall algorithm)是解決任意兩點間的最短路徑的一種演算法,可以正確處理有向圖或負權的最短路徑問題。
Floyd-Warshall演算法的時間復雜度為O(N^3),空間復雜度為O(N^2)。
Floyd-Warshall的原理是動態規劃:
設Di,j,k為從i到j的只以(1..k)集合中的節點為中間節點的最短路徑的長度。
若最短路徑經過點k,則Di,j,k = Di,k,k-1 + Dk,j,k-1;
若最短路徑不經過點k,則Di,j,k = Di,j,k-1。
因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。
在實際演算法中,為了節約空間,可以直接在原來空間上進行迭代,這樣空間可降至二維。
Floyd-Warshall演算法的描述如下:
for k ← 1 to n do
for i ← 1 to n do
for j ← 1 to n do
if (Di,k + Dk,j < Di,j) then
Di,j ← Di,k + Dk,j;
其中Di,j表示由點i到點j的代價,當Di,j為 ∞ 表示兩點之間沒有任何連接。
Dijkstra
求單源、無負權的最短路。時效性較好,時間復雜度為O(V*V+E),可以用優先隊列進行優化,優化後時間復雜度變為0(v*lgn)。
源點可達的話,O(V*lgV+E*lgV)=>O(E*lgV)。
當是稀疏圖的情況時,此時E=V*V/lgV,所以演算法的時間復雜度可為O(V^2) 。可以用優先隊列進行優化,優化後時間復雜度變為0(v*lgn)。
Bellman-Ford
求單源最短路,可以判斷有無負權迴路(若有,則不存在最短路),時效性較好,時間復雜度O(VE)。
Bellman-Ford演算法是求解單源最短路徑問題的一種演算法。
單源點的最短路徑問題是指:給定一個加權有向圖G和源點s,對於圖G中的任意一點v,求從s到v的最短路徑。
與Dijkstra演算法不同的是,在Bellman-Ford演算法中,邊的權值可以為負數。設想從我們可以從圖中找到一個環
路(即從v出發,經過若干個點之後又回到v)且這個環路中所有邊的權值之和為負。那麼通過這個環路,環路中任意兩點的最短路徑就可以無窮小下去。如果不處理這個負環路,程序就會永遠運行下去。 而Bellman-Ford演算法具有分辨這種負環路的能力。
SPFA
是Bellman-Ford的隊列優化,時效性相對好,時間復雜度O(kE)。(k< 與Bellman-ford演算法類似,SPFA演算法採用一系列的鬆弛操作以得到從某一個節點出發到達圖中其它所有節點的最短路徑。所不同的是,SPFA演算法通過維護一個隊列,使得一個節點的當前最短路徑被更新之後沒有必要立刻去更新其他的節點,從而大大減少了重復的操作次數。
SPFA演算法可以用於存在負數邊權的圖,這與dijkstra演算法是不同的。
與Dijkstra演算法與Bellman-ford演算法都不同,SPFA的演算法時間效率是不穩定的,即它對於不同的圖所需要的時間有很大的差別。
在最好情形下,每一個節點都只入隊一次,則演算法實際上變為廣度優先遍歷,其時間復雜度僅為O(E)。另一方面,存在這樣的例子,使得每一個節點都被入隊(V-1)次,此時演算法退化為Bellman-ford演算法,其時間復雜度為O(VE)。
SPFA演算法在負邊權圖上可以完全取代Bellman-ford演算法,另外在稀疏圖中也表現良好。但是在非負邊權圖中,為了避免最壞情況的出現,通常使用效率更加穩定的Dijkstra演算法,以及它的使用堆優化的版本。通常的SPFA。
⑷ 人工智慧 A*演算法原理
A 演算法是啟發式演算法重要的一種,主要是用於在兩點之間選擇一個最優路徑,而A 的實現也是通過一個估值函數
上圖中這個熊到樹葉的 曼哈頓距離 就是藍色線所表示的距離,這其中不考慮障礙物,假如上圖每一個方格長度為1,那麼此時的熊的曼哈頓距離就為9.
起點(X1,Y1),終點(X2,Y2),H=|X2-X1|+|Y2-Y1|
我們也可以通過幾何坐標點來算出曼哈頓距離,還是以上圖為例,左下角為(0,0)點,熊的位置為(1,4),樹葉的位置為(7,1),那麼H=|7-1|+|1-4|=9。
還是以上圖為例,比如剛開始熊位置我們會加入到CLOSE列表中,而熊四周它可以移動到的點位我們會加入到OPEN列表中,並對熊四周的8個節點進行F=G+H這樣的估值運算,然後在這8個節點中選中一個F值為最小的節點,然後把再把這個節點從OPEN列表中刪除,加入到Close列表中,從接著在對這個節點的四周8個節點進行一個估值運算,再接著依次運算,這樣說大家可能不是太理解,我會在下邊做詳細解釋。
從起點到終點,我們通過A星演算法來找出最優路徑
我們把每一個方格的長度定義為1,那從起始點到5位置的代價就是1,到3的代價為1.41,定義好了我們接著看上圖,接著運算
第一步我們會把起始點四周的點加入OPEN列表中然後進行一個估值運算,運算結果如上圖,這其中大家看到一個小箭頭都指向了起點,這個箭頭就是指向父節點,而open列表的G值都是根據這個進行計算的,意思就是我從上一個父節點運行到此處時所需要的總代價,如果指向不一樣可能G值就不一樣,上圖中我們經過計算發現1點F值是7.41是最小的,那我們就選中這個點,並把1點從OPEN列表中刪除,加入到CLOSE列表中,但是我們在往下運算的時候發現1點的四周,2點,3點和起始點這三個要怎麼處理,首先起始點已經加入到了CLOSE,他就不需要再進行這種運算,這就是CLOSE列表的作用,而2點和3點我們也可以對他進行運算,2點的運算,我們從1移動到2點的時候,他需要的代價也就是G值會變成2.41,而H值是不會變的F=2.41+7=9.41,這個值我們發現大於原來的的F值,那我們就不能對他進行改變(把父節點指向1,把F值改為9.41,因為我們一直追求的是F值最小化),3點也同理。
在對1點四周進行運算後整個OPEN列表中有兩個點2點和3點的F值都是7.41,此時我們系統就可能隨機選擇一個點然後進行下一步運算,現在我們選中的是3點,然後對3點的四周進行運算,結果是四周的OPEN點位如果把父節點指向3點值時F值都比原來的大,所以不發生改變。我們在看整個OPEN列表中,也就2點的7.41值是最小的,那我們就選中2點接著運算。
我們在上一部運算中選中的是1點,上圖沒有把2點加入OPEN列表,因為有障礙物的阻擋從1點他移動不到2點,所以沒有把2點加入到OPEN列表中,整個OPEN列表中3的F=8是最小的,我們就選中3,我們對3點四周進行運算是我們發現4點經過計算G=1+1=2,F=2+6=8所以此時4點要進行改變,F變為8並把箭頭指向3點(就是把4點的父節點變為3),如下圖
我們就按照這種方法一直進行運算,最後 的運算結果如下圖
而我們通過目標點位根據箭頭(父節點),一步一步向前尋找最後我們發現了一條指向起點的路徑,這個就是我們所需要的最優路徑。 如下圖的白色選中區域
但是我們還要注意幾點
最優路徑有2個
這是我對A*演算法的一些理解,有些地方可能有BUG,歡迎大家指出,共同學習。
⑸ A*演算法介紹
姓名:車文揚 學號:16020199006
【嵌牛導讀】:A*演算法的逐步詳解
【嵌牛鼻子】:啟發式演算法
【嵌牛提問】:A*演算法的原理是什麼?
【嵌牛正文】:
A*演算法
路徑規劃是指的是機器人的最優路徑規劃問題,即依據某個或某些優化准則(如工作代價最小、行走路徑最短、行走時間最短等),在工作空間中找到一個從起始狀態到目標狀態能避開障礙物的最優路徑。機器人的路徑規劃應用場景極豐富,最常見如游戲中NPC及控制角色的位置移動,網路地圖等導航問題,小到家庭掃地機器人、無人機大到各公司正爭相開拓的無人駕駛汽車等。
目前路徑規劃演算法分為:
A*演算法原理:
在計算機科學中,A*演算法作為Dijkstra演算法的擴展,因其高效性而被廣泛應用於尋路及圖的遍歷,如星際爭霸等游戲中就大量使用。在理解演算法前,我們需要知道幾個概念:
搜索區域(The Search Area):圖中的搜索區域被劃分為了簡單的二維數組,數組每個元素對應一個小方格,當然我們也可以將區域等分成是五角星,矩形等,通常將一個單位的中心點稱之為搜索區域節點(Node)。
開放列表(Open List):我們將路徑規劃過程中待檢測的節點存放於Open List中,而已檢測過的格子則存放於Close List中。
父節點(parent):在路徑規劃中用於回溯的節點,開發時可考慮為雙向鏈表結構中的父結點指針。
路徑排序(Path Sorting):具體往哪個節點移動由以下公式確定:F(n) = G + H 。G代表的是從初始位置A沿著已生成的路徑到指定待檢測格子的移動開銷。H指定待測格子到目標節點B的估計移動開銷。
啟發函數(Heuristics Function):H為啟發函數,也被認為是一種試探,由於在找到唯一路徑前,我們不確定在前面會出現什麼障礙物,因此用了一種計算H的演算法,具體根據實際場景決定。在我們簡化的模型中,H採用的是傳統的曼哈頓距離(Manhattan Distance),也就是橫縱向走的距離之和。
如下圖所示,綠色方塊為機器人起始位置A,紅色方塊為目標位置B,藍色為障礙物。
我們把要搜尋的區域劃分成了正方形的格子。這是尋路的第一步,簡化搜索區域。這個特殊的方法把我們的搜索區域簡化為了2 維數組。數組的每一項代表一個格子,它的狀態就是可走(walkalbe)或不可走(unwalkable) 。現用A*演算法尋找出一條自A到B的最短路徑,每個方格的邊長為10,即垂直水平方向移動開銷為10。因此沿對角移動開銷約等於14。具體步驟如下:
從起點 A 開始,把它加入到一個由方格組成的open list(開放列表) 中,這個open list像是一個購物清單。Open list里的格子是可能會是沿途經過的,也有可能不經過。因此可以將其看成一個待檢查的列表。查看與A相鄰的8個方格 ,把其中可走的 (walkable) 或可到達的(reachable) 方格加入到open list中。並把起點 A 設置為這些方格的父節點 (parent node) 。然後把 A 從open list中移除,加入到close list(封閉列表) 中,close list中的每個方格都是不需要再關注的。
如下圖所示,深綠色的方格為起點A,它的外框是亮藍色,表示該方格被加入到了close list 。與它相鄰的黑色方格是需要被檢查的,他們的外框是亮綠色。每個黑方格都有一個灰色的指針指向他們的父節點A。
下一步,我們需要從open list中選一個與起點A相鄰的方格。但是到底選擇哪個方格好呢?選F值最小的那個。我們看看下圖中的一些方格。在標有字母的方格中G = 10 。這是因為水平方向從起點到那裡只有一個方格的距離。與起點直接相鄰的上方,下方,左方的方格的G 值都是10 ,對角線的方格G 值都是14 。H值通過估算起點到終點( 紅色方格) 的Manhattan 距離得到,僅作橫向和縱向移動,並且忽略沿途的障礙。使用這種方式,起點右邊的方格到終點有3 個方格的距離,因此H = 30 。這個方格上方的方格到終點有4 個方格的距離( 注意只計算橫向和縱向距離) ,因此H = 40 。
比較open list中節點的F值後,發現起點A右側節點的F=40,值最小。選作當前處理節點,並將這個點從Open List刪除,移到Close List中。
對這個節點周圍的8個格子進行判斷,若是不可通過(比如牆,水,或是其他非法地形)或已經在Close List中,則忽略。否則執行以下步驟:
若當前處理節點的相鄰格子已經在Open List中,則檢查這條路徑是否更優,即計算經由當前處理節點到達那個方格是否具有更小的 G值。如果沒有,不做任何操作。相反,如果G值更小,則把那個方格的父節點設為當前處理節點 ( 我們選中的方格 ) ,然後重新計算那個方格的 F 值和 G 值。
若當前處理節點的相鄰格子不在Open List中,那麼把它加入,並將它的父節點設置為該節點。
按照上述規則我們繼續搜索,選擇起點右邊的方格作為當前處理節點。它的外框用藍線打亮,被放入了close list 中。然後我們檢查與它相鄰的方格。它右側的3個方格是牆壁,我們忽略。它左邊的方格是起點,在close list 中,我們也忽略。其他4個相鄰的方格均在open list 中,我們需要檢查經由當前節點到達那裡的路徑是否更好。我們看看上面的方格,它現在的G值為14 ,如果經由當前方格到達那裡,G值將會為20( 其中10為從起點到達當前方格的G值,此外還要加上從當前方格縱向移動到上面方格的G值10) ,因此這不是最優的路徑。看圖就會明白直接從起點沿對角線移動到那個方格比先橫向移動再縱向移動要好。
當把4個已經在open list 中的相鄰方格都檢查後,沒有發現經由當前節點的更好路徑,因此不做任何改變。接下來要選擇下一個待處理的節點。因此再次遍歷open list ,現在open list中只有7 個方格了,我們需要選擇F值最小的那個。這次有兩個方格的F值都是54,選哪個呢?沒什麼關系。從速度上考慮,選擇最後加入open list 的方格更快。因此選擇起點右下方的方格,如下圖所示。
接下來把起點右下角F值為54的方格作為當前處理節點,檢查其相鄰的方格。我們發現它右邊是牆(牆下面的一格也忽略掉,假定牆角不能直接穿越),忽略之。這樣還剩下 5 個相鄰的方格。當前方格下面的 2 個方格還沒有加入 open list ,所以把它們加入,同時把當前方格設為他們的父親。在剩下的 3 個方格中,有 2 個已經在 close list 中 ( 一個是起點,一個是當前方格上面的方格,外框被加亮的 ) ,我們忽略它們。最後一個方格,也就是當前方格左邊的方格,檢查經由當前方格到達那裡是否具有更小的 G 值。沒有,因此我們准備從 open list 中選擇下一個待處理的方格。
不斷重復這個過程,直到把終點也加入到了open list 中,此時如下圖所示。注意在起點下方2 格處的方格的父親已經與前面不同了。之前它的G值是28並且指向它右上方的方格。現在它的G 值為20 ,並且指向它正上方的方格。這是由於在尋路過程中的某處使用新路徑時G值更小,因此父節點被重新設置,G和F值被重新計算。
那麼我們怎樣得到實際路徑呢?很簡單,如下圖所示,從終點開始,沿著箭頭向父節點移動,直至回到起點,這就是你的路徑。
A*演算法總結:
1. 把起點加入 open list 。
2. 重復如下過程:
a. 遍歷open list ,查找F值最小的節點,把它作為當前要處理的節點,然後移到close list中
b. 對當前方格的 8 個相鄰方格一一進行檢查,如果它是不可抵達的或者它在close list中,忽略它。否則,做如下操作:
□ 如果它不在open list中,把它加入open list,並且把當前方格設置為它的父親
□ 如果它已經在open list中,檢查這條路徑 ( 即經由當前方格到達它那裡 ) 是否更近。如果更近,把它的父親設置為當前方格,並重新計算它的G和F值。如果你的open list是按F值排序的話,改變後你可能需要重新排序。
c. 遇到下面情況停止搜索:
□ 把終點加入到了 open list 中,此時路徑已經找到了,或者
□ 查找終點失敗,並且open list 是空的,此時沒有路徑。
3. 從終點開始,每個方格沿著父節點移動直至起點,形成路徑。
⑹ A*演算法java實現
首先,你要知道走迷宮的思路:就是遇到岔路都往一個方向,比如往右,遇到死路就回頭,回頭遇到岔路繼續往右。
線法線在同一平面上,反射光線與入射光線分