『壹』 數學除了加減乘除外還有什麼演算法
還有取模運算,取模運算一般都是使用在編程語言的,%就是取模運算符,它屬於二級運算;在數學的領域上%在大部分情況下是百分號的意思
一級運算有:+(加法),-(減法),二級運算有:*(乘法,可以寫成×),/(分數線(=)除法,可以寫成÷),%(取模,求余,但是在數學的領域%大多部分情況下是百分號的意思),三級運算有:^(乘方,可以寫成**),√(開方,也可以寫成//)
取模運算:
a%b=a - c*b
若a=7,b=6
∴a%b =7%6=1;
演算法很簡單,
親手繪畫,寫字寫的丑不要在意
求模運算和求余運算在第一步不同: 取余運算在取b的值時,向0 方向舍入(fix()函數);而取模運算在計算b的值時,向負無窮方向舍入(floor()函數)。
給定一個正整數p,任意一個整數n,一定存在等式 :
n = kp + r ;
其中 k、r 是整數,且 0 ≤ r < p,則稱 k 為 n 除以 p 的商,r 為 n 除以 p 的余數。
對於正整數 p 和整數 a,b,定義如下運算:
取模運算:a % p(或a mod p),表示a除以p的余數。
模p加法: ,其結果是a+b算術和除以p的余數。
模p減法: ,其結果是a-b算術差除以p的余數。
模p乘法: ,其結果是 a * b算術乘法除以p的余數。
1. 同餘式:正整數a,b對p取模,它們的余數相同,記做 或者a ≡ b (mod p)。
2. n % p 得到結果的正負由被除數n決定,與p無關。例如:7%4 = 3, -7%4 = -3, 7%-4 = 3, -7%-4 = -3。
基本性質
若p|(a-b),則a≡b (% p)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)
(a % p)=(b % p)意味a≡b (% p)
對稱性:a≡b (% p)等價於b≡a (% p)
傳遞性:若a≡b (% p)且b≡c (% p) ,則a≡c (% p)
乘方運算
3^3=27 (3^3=3*3*3=27)
開方運算
27√3=3 (27 / 3 / 3 = 3)
乘方和開方可能很多人都知道了,這么不多說了