導航:首頁 > 源碼編譯 > 對數運演算法則題及答案

對數運演算法則題及答案

發布時間:2024-07-31 22:09:15

1. 對數的運演算法

對數的運演算法則:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指數的運演算法則:

1、[a^m]×[a^n]=a^(m+n) 【同底數冪相乘,底數不變,指數相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底數冪相除,底數不變,指數相減】

3、[a^m]^n=a^(mn) 【冪的乘方,底數不變,指數相乘】

4、[ab]^m=(a^m)×(a^m) 【積的乘方,等於各個因式分別乘方,再把所得的冪相乘】

(1)對數運演算法則題及答案擴展閱讀:

對數的歷史:

16、17世紀之交,隨著天文、航海、工程、貿易以及軍事的發展,改進數字計算方法成了當務之急。約翰·納皮爾(J.Napier,1550—1617)正是在研究天文學的過程中,為了簡化其中的計算而發明了對數.對數的發明是數學史上的重大事件,天文學界更是以近乎狂喜的心情迎接這一發明。

恩格斯曾經把對數的發明和解析幾何的創始、微積分的建立稱為17世紀數學的三大成就,伽利略也說過:「給我空間、時間及對數,我就可以創造一個宇宙。」

對數發明之前,人們對三角運算中將三角函數的積化為三角函數的和或差的方法已很熟悉,而且德國數學家斯蒂弗爾(M.Stifel,約1487—1567)在《綜合算術》(1544年)中闡述了一種如下所示的一種對應關系:

同時該種關系之間存在的運算性質(即上面一行數字的乘、除、乘方、開方對應於下面一行數字的加、減、乘、除)也已廣為人知。經過對運算體系的多年研究,納皮爾在1614年出版了《奇妙的對數定律說明書》,書中藉助運動學,用幾何術語闡述了對數方法。

2. 對數和指數怎麼運算

一、對數的運演算法則:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

二、指數的運演算法則:

1、[a^m]×[a^n]=a^(m+n)

2、[a^m]÷[a^n]=a^(m-n)

3、[a^m]^n=a^(mn)

4、[ab]^m=(a^m)×(a^m)

記憶口決:

有理數的指數冪,運演算法則要記住。

指數加減底不變,同底數冪相乘除。

指數相乘底不變,冪的乘方要清楚。

積商乘方原指數,換底乘方再乘除。

非零數的零次冪,常值為 1不糊塗。

負整數的指數冪,指數轉正求倒數。

看到分數指數冪,想到底數必非負。

乘方指數是分子,根指數要當分母。

(2)對數運演算法則題及答案擴展閱讀

指數的相關歷史:

1607 年,利瑪竇和徐光啟合譯歐幾里得的 《幾何原本》,在譯本中徐光啟重新使用了冪字,並有註解:「自乘之數曰冪。」這是第一次給冪這個概念下定義。

至十七世紀,具有「現代」意義的指數符號才出現。最初的,只是表示未知數之次數,但並無出現未知量符號。比爾吉則把羅馬數字寫於系數數字之上,以表示未知量次數。

其後,開普勒等亦採用了這符號。羅曼斯開始寫出未知量的字母。1631 年,哈里奧特( 1560-1621) 改進了韋達的記法,以 aa表示q^2 , 以aaa 表示q^3。

1636 年,居於巴黎的蘇格蘭人休姆( James Hume) 以小羅馬數字放於字母之右上角的方式表達指數,該表示方式除了用的是羅馬數字外,已與現在的指數表示法相同。笛卡兒( 1596-1650) 以較小的印度阿拉伯數字放於右上角來表示指數,是現今通用的指數表示法。

3. 怎樣算對數什麼是對數

如果a(a>0,且a≠1)的b次冪等於N,即ab=N,那麼數b叫做以a為底N的對數,記作:logaN=b,其中a叫做對數的底數,N叫做真數.

由定義知:

①負數和零沒有對數;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b。

對數的運演算法則:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指數的運演算法則:

1、[a^m]×[a^n]=a^(m+n) 【同底數冪相乘,底數不變,指數相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底數冪相除,底數不變,指數相減】

3、[a^m]^n=a^(mn) 【冪的乘方,底數不變,指數相乘】

4、[ab]^m=(a^m)×(a^m) 【積的乘方,等於各個因式分別乘方,再把所得的冪相乘】

閱讀全文

與對數運演算法則題及答案相關的資料

熱點內容
outlook伺服器怎麼查詢 瀏覽:398
python預測疫情代碼 瀏覽:982
普通化學原理pdf 瀏覽:904
java的聖經 瀏覽:39
python遍歷兩個數組 瀏覽:393
手游搭建雲伺服器 瀏覽:401
視易鋒雲伺服器啟動黑屏 瀏覽:139
python怎麼獲取網頁a標簽內容 瀏覽:982
app更新後老的安裝包去哪裡了 瀏覽:199
集合運演算法則差集 瀏覽:310
x2pdf 瀏覽:271
python源碼cs 瀏覽:101
數控機床自動編程軟體 瀏覽:738
方舟的伺服器號是什麼 瀏覽:111
沒有伺服器怎麼發現其他節點 瀏覽:337
文明傳奇怎麼開伺服器 瀏覽:56
javalistint 瀏覽:675
程序員到公司當領導 瀏覽:225
用演算法控制玩家的行為 瀏覽:484
androidsdk17下載 瀏覽:794