Python基礎演算法有哪些?
1.
冒泡排序:是一種簡單直觀的排序演算法。重復地走訪過要排序的數列,一次比較兩個元素,如果順序錯誤就交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該排序已經完成。
2.
插入排序:沒有冒泡排序和選擇排序那麼粗暴,其原理最容易理解,插入排序是一種最簡單直觀的排序演算法啊,它的工作原理是通過構建有序序列,對於未排序數據在已排序序列中從後向前排序,找到對應位置。
3.
希爾排序:也被叫做遞減增量排序方法,是插入排序的改進版本。希爾排序是基於插入排序提出改進方法的排序演算法,先將整個待排序的記錄排序分割成為若干個子序列分別進行直接插入排序,待整個序列中的記錄基本有序時,再對全記錄進行依次直接插入排序。
4. 歸並排序:是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法Divide and的一個非常典型的應用。
5. 快速排序:由東尼·霍爾所發展的一種排序演算法。又是一種分而治之思想在排序演算法上的典型應用,本質上快速排序應該算是冒泡排序基礎上的遞歸分治法。
6.
堆排序:是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質,即子結點的鍵值或索引總是小於它的父結點。
7.
計算排序:其核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中,作為一種線性時間復雜度的排序,計算排序要求輸入的數據必須是具有確定范圍的整數。
2. python中有哪些簡單的演算法
你好:
跟你詳細說一下python的常用8大演算法:
1、插入排序
插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。插入演算法把要排序的數組分成兩部分:第一部分包含了這個數組的所有元素,但將最後一個元素除外(讓數組多一個空間才有插入的位置),而第二部分就只包含這一個元素(即待插入元素)。在第一部分排序完成後,再將這個最後元素插入到已排好序的第一部分中。
2、希爾排序
希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。該方法因DL.Shell於1959年提出而得名。 希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法便終止。
3、冒泡排序
它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。
4、快速排序
通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。
5、直接選擇排序
基本思想:第1趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;第2趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;以此類推,第i趟在待排序記錄r[i] ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。
6、堆排序
堆排序(Heapsort)是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。可以利用數組的特點快速定位指定索引的元素。堆分為大根堆和小根堆,是完全二叉樹。大根堆的要求是每個節點的值都不大於其父節點的值,即A[PARENT[i]] >= A[i]。在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。
7、歸並排序
歸並排序是建立在歸並操作上的一種有效的排序演算法,該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合並成一個有序表,稱為二路歸並。
歸並過程為:比較a[i]和a[j]的大小,若a[i]≤a[j],則將第一個有序表中的元素a[i]復制到r[k]中,並令i和k分別加上1;否則將第二個有序表中的元素a[j]復制到r[k]中,並令j和k分別加上1,如此循環下去,直到其中一個有序表取完,然後再將另一個有序表中剩餘的元素復制到r中從下標k到下標t的單元。歸並排序的演算法我們通常用遞歸實現,先把待排序區間[s,t]以中點二分,接著把左邊子區間排序,再把右邊子區間排序,最後把左區間和右區間用一次歸並操作合並成有序的區間[s,t]。
8、基數排序
基數排序(radix sort)屬於「分配式排序」(distribution sort),又稱「桶子法」(bucket sort)或bin sort,顧名思義,它是透過鍵值的部分資訊,將要排序的元素分配至某些「桶」中,藉以達到排序的作用,基數排序法是屬於穩定性的排序,其時間復雜度為O (nlog(r)m),其中r為所採取的基數,而m為堆數,在某些時候,基數排序法的效率高於其它的穩定性排序法。
3. 濡備綍鍦╬ython涓緙栧啓浜哄伐鏅鴻兘綆楁硶錛
Python鏄涓縐嶉珮綰х紪紼嬭璦錛屽畠鍙浠ョ敤浜庡悇縐嶉嗗煙錛屽傛暟鎹縐戝︺佹満鍣ㄥ︿範銆乄eb寮鍙戠瓑銆侾ython鍦ㄤ漢宸ユ櫤鑳介嗗煙涔熸湁鐫騫挎硾鐨勫簲鐢ㄣ傝孭ython浜虹嫍澶ф垬鍒欐槸涓嬈懼熀浜嶱ython璇璦鐨勪漢宸ユ櫤鑳芥父鎴忥紝瀹冨彲浠ヨ╀綘鍦ㄦ父鎴忎腑浣撻獙鍒扮紪鍐欎漢宸ユ櫤鑳界畻娉曠殑涔愯叮銆
鎿嶄綔姝ラ
1.棣栧厛錛屼綘闇瑕佸畨瑁匬ython銆備綘鍙浠ヤ粠Python瀹樻柟緗戠珯涓婁笅杞絇ython鐨勫畨瑁呭寘錛屽苟鏍規嵁瀹夎呭悜瀵艱繘琛屽畨瑁呫傚畨瑁呭畬鎴愬悗錛屼綘鍙浠ュ湪緇堢涓杈撳叆python鍛戒護鏉ラ獙璇丳ython鏄鍚﹀畨瑁呮垚鍔熴
2.鎺ヤ笅鏉ワ紝浣犻渶瑕佷笅杞絇ython浜虹嫍澶ф垬鐨勪唬鐮併備綘鍙浠ュ湪GitHub涓婃壘鍒拌ラ」鐩鐨勪唬鐮侊紝騫跺皢鍏朵笅杞藉埌鏈鍦般
3.鎵撳紑緇堝仛闂風錛岃繘鍏Python浜虹嫍澶ф垬鐨勪唬鐮佺洰褰曘傚湪綰鍗囧集緇堢涓杈撳叆pythonmain.py鍛戒護錛屽嵆鍙榪愯屾父鎴忋
4.娓告垙寮濮嬪悗錛屼綘闇瑕佺紪鍐欎漢宸ユ櫤鑳界畻娉曟潵鎺у埗浣犵殑鐙椼備綘鍙浠ュ湪浠g爜涓鎵懼埌AI.py鏂囦歡錛屽苟鍦ㄥ叾涓緙栧啓浣犵殑綆楁硶銆
5.鍦ㄧ紪鍐欑畻娉曟椂錛屼綘闇瑕佷嬌鐢≒ython鐨勫悇縐嶅簱鍜屽嚱鏁版潵瀹炵幇浣犵殑綆楁硶銆備緥濡傦紝浣犲彲浠ヤ嬌鐢╪umpy搴撴潵榪涜岀煩闃佃$畻錛屼嬌鐢╰ensorflow搴撴潵榪涜屾満鍣ㄥ︿範絳夈
6.鍦ㄧ紪鍐欑畻絎戦攱娉曞畬鎴愬悗錛屼綘闇瑕佸皢鍏跺煎叆鍒版父鎴忎腑銆備綘鍙浠ュ湪main.py鏂囦歡涓鎵懼埌瀵煎叆綆楁硶鐨勪唬鐮侊紝騫跺皢鍏朵慨鏀逛負浣犵殑綆楁硶鏂囦歡鍚嶃
7.榪愯屾父鎴忓悗錛屼綘鐨勭嫍灝嗕細鑷鍔ㄦ墽琛屼綘緙栧啓鐨勭畻娉曪紝騫朵笌鍏朵粬鐙楄繘琛屾垬鏂椼備綘闇瑕佷笉鏂浼樺寲浣犵殑綆楁硶錛屼互鎻愰珮浣犵殑鐙楃殑鎴樻枟鍔涖
4. python演算法有哪些
Python演算法的特徵
1. 有窮性:演算法的有窮性指演算法必須能在執行有限個步驟之後終止;
2. 確切性:演算法的每一步驟必須有確切的定義;
3. 輸入項:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
4. 輸出項:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果,沒有輸出的演算法是毫無意義的;
5. 可行性:演算法中執行的任何計算步驟都是可以被分解為基本的可執行操作步,即每個計算步都可以在有限時間內完成;
6. 高效性:執行速度快、佔用資源少;
7. 健壯性:數據響應正確。
Python演算法分類:
1.
冒泡排序:是一種簡單直觀的排序演算法。重復地走訪過要排序的數列,一次比較兩個元素,如果順序錯誤就交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該排序已經完成。
2.
插入排序:沒有冒泡排序和選擇排序那麼粗暴,其原理最容易理解,插入排序是一種最簡單直觀的排序演算法啊,它的工作原理是通過構建有序序列,對於未排序數據在已排序序列中從後向前排序,找到對應位置。
3.
希爾排序:也被叫做遞減增量排序方法,是插入排序的改進版本。希爾排序是基於插入排序提出改進方法的排序演算法,先將整個待排序的記錄排序分割成為若干個子序列分別進行直接插入排序,待整個序列中的記錄基本有序時,再對全記錄進行依次直接插入排序。
4. 歸並排序:是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法Divide and的一個非常典型的應用。
5. 快速排序:由東尼·霍爾所發展的一種排序演算法。又是一種分而治之思想在排序演算法上的典型應用,本質上快速排序應該算是冒泡排序基礎上的遞歸分治法。
6.
堆排序:是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質,即子結點的鍵值或索引總是小於它的父結點。
7.
計算排序:其核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中,作為一種線性時間復雜度的排序,計算排序要求輸入的數據必須是具有確定范圍的整數。
5. python中有哪些簡單的演算法
首先謝謝邀請,
python中有的演算法還是比較多的?
python之所以火是因為人工智慧的發展,人工智慧的發展離不開演算法!
感覺有本書比較適合你,不過可惜的是這本書沒有電子版,只有紙質的。
這本書對於演算法從基本的入門到實現,循序漸進的介紹,比如裡面就涵蓋了數學建模的常用演算法。
第 1章從數學建模到人工智慧
1.1數學建模1.1.1數學建模與人工智慧1.1.2數學建模中的常見問題1.2人工智慧下的數學1.2.1統計量1.2.2矩陣概念及運算1.2.3概率論與數理統計1.2.4高等數學——導數、微分、不定積分、定積分
第2章 Python快速入門
2.1安裝Python2.1.1Python安裝步驟2.1.2IDE的選擇2.2Python基本操作2.2.1第 一個小程序2.2.2注釋與格式化輸出2.2.3列表、元組、字典2.2.4條件語句與循環語句2.2.5break、continue、pass2.3Python高級操作2.3.1lambda2.3.2map2.3.3filter
第3章Python科學計算庫NumPy
3.1NumPy簡介與安裝3.1.1NumPy簡介3.1.2NumPy安裝3.2基本操作3.2.1初識NumPy3.2.2NumPy數組類型3.2.3NumPy創建數組3.2.4索引與切片3.2.5矩陣合並與分割3.2.6矩陣運算與線性代數3.2.7NumPy的廣播機制3.2.8NumPy統計函數3.2.9NumPy排序、搜索3.2.10NumPy數據的保存
第4章常用科學計算模塊快速入門
4.1Pandas科學計算庫4.1.1初識Pandas4.1.2Pandas基本操作4.2Matplotlib可視化圖庫4.2.1初識Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib繪圖案例4.3SciPy科學計算庫4.3.1初識SciPy4.3.2SciPy基本操作4.3.3SciPy圖像處理案例第5章Python網路爬蟲5.1爬蟲基礎5.1.1初識爬蟲5.1.2網路爬蟲的演算法5.2爬蟲入門實戰5.2.1調用API5.2.2爬蟲實戰5.3爬蟲進階—高效率爬蟲5.3.1多進程5.3.2多線程5.3.3協程5.3.4小結
第6章Python數據存儲
6.1關系型資料庫MySQL6.1.1初識MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初識NoSQL6.2.2Python操作MongoDB6.3本章小結6.3.1資料庫基本理論6.3.2資料庫結合6.3.3結束語
第7章Python數據分析
7.1數據獲取7.1.1從鍵盤獲取數據7.1.2文件的讀取與寫入7.1.3Pandas讀寫操作7.2數據分析案例7.2.1普查數據統計分析案例7.2.2小結
第8章自然語言處理
8.1Jieba分詞基礎8.1.1Jieba中文分詞8.1.2Jieba分詞的3種模式8.1.3標注詞性與添加定義詞8.2關鍵詞提取8.2.1TF-IDF關鍵詞提取8.2.2TextRank關鍵詞提取8.3word2vec介紹8.3.1word2vec基礎原理簡介8.3.2word2vec訓練模型8.3.3基於gensim的word2vec實戰
第9章從回歸分析到演算法基礎
9.1回歸分析簡介9.1.1「回歸」一詞的來源9.1.2回歸與相關9.1.3回歸模型的劃分與應用9.2線性回歸分析實戰9.2.1線性回歸的建立與求解9.2.2Python求解回歸模型案例9.2.3檢驗、預測與控制
第10章 從K-Means聚類看演算法調參
10.1K-Means基本概述10.1.1K-Means簡介10.1.2目標函數10.1.3演算法流程10.1.4演算法優缺點分析10.2K-Means實戰
第11章 從決策樹看演算法升級
11.1決策樹基本簡介11.2經典演算法介紹11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系數11.2.5小結11.3決策樹實戰11.3.1決策樹回歸11.3.2決策樹的分類
第12章 從樸素貝葉斯看演算法多變193
12.1樸素貝葉斯簡介12.1.1認識樸素貝葉斯12.1.2樸素貝葉斯分類的工作過程12.1.3樸素貝葉斯演算法的優缺點12.23種樸素貝葉斯實戰
第13章 從推薦系統看演算法場景
13.1推薦系統簡介13.1.1推薦系統的發展13.1.2協同過濾13.2基於文本的推薦13.2.1標簽與知識圖譜推薦案例13.2.2小結
第14章 從TensorFlow開啟深度學習之旅
14.1初識TensorFlow14.1.1什麼是TensorFlow14.1.2安裝TensorFlow14.1.3TensorFlow基本概念與原理14.2TensorFlow數據結構14.2.1階14.2.2形狀14.2.3數據類型14.3生成數據十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成隨機數14.4TensorFlow實戰
希望對你有幫助!!!
貴在堅持,自己掌握一些,在工作中不斷打磨,高薪不是夢!!