CRC演算法原理及C語言實現
摘 要 本文從理論上推導出CRC演算法實現原理,給出三種分別適應不同計算機或微控制器硬體環境的C語言程序。讀者更能根據本演算法原理,用不同的語言編寫出獨特風格更加實用的CRC計算程序。
關鍵詞 CRC 演算法 C語言
1 引言
循環冗餘碼CRC檢驗技術廣泛應用於測控及通信領域。CRC計算可以靠專用的硬體來實現,但是對於低成本的微控制器系統,在沒有硬體支持下實現CRC檢驗,關鍵的問題就是如何通過軟體來完成CRC計算,也就是CRC演算法的問題。
這里將提供三種演算法,它們稍有不同,一種適用於程序空間十分苛刻但CRC計算速度要求不高的微控制器系統,另一種適用於程序空間較大且CRC計算速度要求較高的計算機或微控制器系統,最後一種是適用於程序空間不太大,且CRC計算速度又不可以太慢的微控制器系統。
2 CRC簡介
CRC校驗的基本思想是利用線性編碼理論,在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的監督碼(既CRC碼)r位,並附在信息後邊,構成一個新的二進制碼序列數共(k+r)位,最後發送出去。在接收端,則根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。
16位的CRC碼產生的規則是先將要發送的二進制序列數左移16位(既乘以 )後,再除以一個多項式,最後所得到的余數既是CRC碼,如式(2-1)式所示,其中B(X)表示n位的二進制序列數,G(X)為多項式,Q(X)為整數,R(X)是余數(既CRC碼)。
(2-1)
求CRC碼所採用模2加減運演算法則,既是不帶進位和借位的按位加減,這種加減運算實際上就是邏輯上的異或運算,加法和減法等價,乘法和除法運算與普通代數式的乘除法運算是一樣,符合同樣的規律。生成CRC碼的多項式如下,其中CRC-16和CRC-CCITT產生16位的CRC碼,而CRC-32則產生的是32位的CRC碼。本文不討論32位的CRC演算法,有興趣的朋友可以根據本文的思路自己去推導計算方法。
CRC-16:(美國二進制同步系統中採用)
CRC-CCITT:(由歐洲CCITT推薦)
CRC-32:
接收方將接收到的二進制序列數(包括信息碼和CRC碼)除以多項式,如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤,關於其原理這里不再多述。用軟體計算CRC碼時,接收方可以將接收到的信息碼求CRC碼,比較結果和接收到的CRC碼是否相同。
3 按位計算CRC
對於一個二進制序列數可以表示為式(3-1):
(3-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(3-2)所示:
(3-2)
可以設: (3-3)
其中 為整數, 為16位二進制余數。將式(3-3)代入式(3-2)得:
(3-4)
再設: (3-5)
其中 為整數, 為16位二進制余數,將式(3-5)代入式(3-4),如上類推,最後得到:
(3-6)
根據CRC的定義,很顯然,十六位二進制數 既是我們要求的CRC碼。
式(3-5)是編程計算CRC的關鍵,它說明計算本位後的CRC碼等於上一位CRC碼乘以2後除以多項式,所得的余數再加上本位值除以多項式所得的余數。由此不難理解下面求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,0x1021與多項式有關。
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned char i;
unsigned int crc=0;
while(len--!=0) {
for(i=0x80; i!=0; i/=2) {
if((crc&;0x8000)!=0) {crc*=2; crc^=0x1021;} /* 余式CRC乘以2再求CRC */
else crc*=2;
if((*ptr&;i)!=0) crc^=0x1021; /* 再加上本位的CRC */
}
ptr++;
}
return(crc);
}
按位計算CRC雖然代碼簡單,所佔用的內存比較少,但其最大的缺點就是一位一位地計算會佔用很多的處理器處理時間,尤其在高速通訊的場合,這個缺點更是不可容忍。因此下面再介紹一種按位元組查錶快速計算CRC的方法。
4 按位元組計算CRC
不難理解,對於一個二進制序列數可以按位元組表示為式(4-1),其中 為一個位元組(共8位)。
(4-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(4-2)
可以設: (4-3)
其中 為整數, 為16位二進制余數。將式(4-3)代入式(4-2)得:
(4-4)
因為:
(4-5)
其中 是 的高八位, 是 的低八位。將式(4-5)代入式(4-4),經整理後得:
(4-6)
再設: (4-7)
其中 為整數, 為16位二進制余數。將式(4-7)代入式(4-6),如上類推,最後得:
(4-8)
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(4-7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組余式CRC碼的低8位左移8位後,再加上上一位元組CRC右移8位(也既取高8位)和本位元組之和後所求得的CRC碼,如果我們把8位二進制序列數的CRC全部計算出來,放如一個表裡,採用查表法,可以大大提高計算速度。由此不難理解下面按位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[256]={ /* CRC余式表 */
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x 1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
crc=0;
while(len--!=0) {
da=(uchar) (crc/256); /* 以8位二進制數的形式暫存CRC的高8位 */
crc<<=8; /* 左移8位,相當於CRC的低8位乘以 */
crc^=crc_ta[da^*ptr]; /* 高8位和當前位元組相加後再查表求CRC ,再加上以前的CRC */
ptr++;
}
return(crc);
}
很顯然,按位元組求CRC時,由於採用了查表法,大大提高了計算速度。但對於廣泛運用的8位微處理器,代碼空間有限,對於要求256個CRC余式表(共512位元組的內存)已經顯得捉襟見肘了,但CRC的計算速度又不可以太慢,因此再介紹下面一種按半位元組求CRC的演算法。
5 按半位元組計算CRC
同樣道理,對於一個二進制序列數可以按位元組表示為式(5-1),其中 為半個位元組(共4位)。
(5-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(5-2)
可以設: (5-3)
其中 為整數, 為16位二進制余數。將式(5-3)代入式(5-2)得:
(5-4)
因為:
(5-5)
其中 是 的高4位, 是 的低12位。將式(5-5)代入式(5-4),經整理後得:
(5-6)
再設: (5-7)
其中 為整數, 為16位二進制余數。將式(5-7)代入式(5-6),如上類推,最後得:
(5-8)
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(5-7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組CRC碼的低12位左移4位後,再加上上一位元組余式CRC右移4位(也既取高4位)和本位元組之和後所求得的CRC碼,如果我們把4位二進制序列數的CRC全部計算出來,放在一個表裡,採用查表法,每個位元組算兩次(半位元組算一次),可以在速度和內存空間取得均衡。由此不難理解下面按半位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
unsigned cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[16]={ /* CRC余式表 */
0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,
0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef,
}
crc=0;
while(len--!=0) {
da=((uchar)(crc/256))/16; /* 暫存CRC的高四位 */
crc<<=4; /* CRC右移4位,相當於取CRC的低12位)*/
crc^=crc_ta[da^(*ptr/16)]; /* CRC的高4位和本位元組的前半位元組相加後查表計算CRC,
然後加上上一次CRC的余數 */
da=((uchar)(crc/256))/16; /* 暫存CRC的高4位 */
crc<<=4; /* CRC右移4位, 相當於CRC的低12位) */
crc^=crc_ta[da^(*ptr&;0x0f)]; /* CRC的高4位和本位元組的後半位元組相加後查表計算CRC,
然後再加上上一次CRC的余數 */
ptr++;
}
return(crc);
}
② 單片機pid演算法控制步進電機的電路圖和程序
//P1.1(T0):Count They Distance
//P0.4:Tx
//P0.5:Rx
#include <C8051F310.h> //SFR declarations
#include <stdio.h> //Standard I/O definition file
#include <math.h> //Math library file
#include <Intrins.h>
#include <absacc.h>
unsigned int j,i;
char a=0;
unsigned int t=0;
//sbit led=P0^2;
//P0.0(PWM0):給定左輪速度.
sbit vls=P0^4; //P0.4(GPIO):給定左輪方向.
sbit vlf=P0^6; //P0.6(T0) :反饋左輪速度.
sbit dlf=P1^0; //P1.0(GPIO):反饋左輪方向.
//P0.2(PWM0):給定右輪速度.
sbit vrs=P0^5; //P0.5(GPIO):給定右輪方向.
sbit vrf=P0^7; //P0.7(T0) :反饋右輪速度.
sbit drf=P1^1; //P1.1(GPIO):反饋右輪方向.
int ol; //左輪給定值
int len;
int len_1,len_2;
int lyn_1,lyn_2;
int vl1,vl2; //反饋左輪速度值(取樣周期內的方波數)
int lfz; //運算後賦給PWM的值
int lyn,lynn;
int lun=0,lun_1=0; //偏差校正值 即校正PWM輸出
int lunp,luni,lund; //PID 校正值
int or; //右輪給定值
int ren;
int ren_1,ren_2;
int ryn_1,ryn_2;
int vr1,vr2; //反饋右輪速度值(取樣周期內的方波數)
int rfz; //運算後賦給PWM的值
int ryn,rynn;
int run=0,run_1=0; //偏差校正值 即校正PWM輸出
int runp,runi,rund; //PID 校正值
float kp=2.0; //比例系數1.8
float kd=0.2; //微分系數0.4
float lki; //積分系數
void pio_init(void);
void sys_init(void);
void t01_init(void);
void TIME3_INT(void);
void PID(void);
void interrupt_init(void);
void delay(unsigned int x);
void pwm1_1(void);
void main(void)
{
PCA0MD &= ~0x40; //關閉
pio_init(); //P11為測距輸入端
sys_init();
t01_init();
pwm1_1();
TIME3_INT();
interrupt_init();
vls=1;vrs=0;
while(1)
{
ol=50;
or=50;
delay(1000);
ol=100;
or=100;
delay(1000);
ol=-50;
or=50;
delay(1000);
}
}
void PID(void)
{
/****************左輪PID調節******************/
if(dlf==1)
{
lyn=(vl2*256+vl1); //dlf是左輪反饋方向,0表示向前 vl=TL0
}
else
{
lyn=-(vl2*256+vl1); //dlf=1表示是向後退,速度應該為負值
}
len=ol-lyn; //誤差=給定速度-反饋速度(取樣周期內的方波數)
if(abs(len)<8)//30
{
lki=1.4; //ki值的確定1.4
}
else
{
lki=0.05; //積分系數:如果 | 給定值-反饋值 | 太大
} //則就可以不引入積分,或者引入的很小0.05
lunp=kp*(len-len_1); //比例校正
luni=lki*len; //積分校正
lund=kd*(len-2*len_1+len_2); //微分校正
lun=lunp+luni+lund+lun_1; //總校正
/*************新舊數據更新*************************/
len_2=len_1;
len_1=len; //len:當前取樣周期內出現的速度偏差;len_1:上次取樣周期內出現的速度偏差
lun_1=lun; //lun:當前取樣周期內得出的PWM校正值;lun_1:上次取樣周期內得出的PWM校正值
/*************新舊數據更新*************************/
if(lun>255)
{
lun=255; //正速度
}
if(lun<-255)
{
lun=-255; //負速度
}
if(lun<0)
{
vls=1;
PCA0CPH0=-lun;
}
if(lun>=0)
{
vls=0;
PCA0CPH0=lun;
}
/****************右輪PID調節******************/
if(drf==0)
{
ryn=(vr2*256+vr1); //drf是右輪反饋方向,0表示向前 vl=TL0
}
else
{
ryn=-(vr2*256+vr1); //dlf=1表示是向後退,速度應該為負值
}
ren=or-ryn; //誤差=給定速度-反饋速度(取樣周期內的方波數)
if(abs(ren)<8)//30
{
lki=1.4; //ki值的確定1.4
}
else
{
lki=0.05; //積分系數:如果 | 給定值-反饋值 | 太大
} //則就可以不引入積分,或者引入的很小0.05
runp=kp*(ren-ren_1); //比例校正
runi=lki*ren; //積分校正
rund=kd*(ren-2*ren_1+ren_2); //微分校正
run=runp+runi+rund+run_1; //總校正
/*************新舊數據更新*************************/
ren_2=ren_1;
ren_1=ren; //len:當前取樣周期內出現的速度偏差;len_1:上次取樣周期內出現的速度偏差
run_1=run; //lun:當前取樣周期內得出的PWM校正值;lun_1:上次取樣周期內得出的PWM校正值
/*************新舊數據更新*************************/
if(run>255)
{
run=255; //正速度
}
if(run<-255)
{
run=-255; //負速度
}
if(run<0)
{
vrs=1;
PCA0CPH1=-run;
}
if(run>=0)
{
vrs=0;
PCA0CPH1=run;
}
//因為這里的PCA0CPH0越大,對應的電機速度越小,所以要255來減一下
}
void pio_init(void)
{
XBR0=0x00; //0000 0001
XBR1=0x72; //0111 0010 時能弱上拉 T0T1連接到腳口P06、P07 CEX0、CEX1連接到腳口P00、P01
P0MDIN=0xff; //模擬(0);數字(1) 1111 0011
P0MDOUT=0xc3;//開漏(0);推挽(1) 1111 1111
P0SKIP=0x3c; //0011 1100
P1MDIN=0xff; //1111 1111
P1MDOUT=0xfc;//
P1SKIP=0x00; //1111 1111
}
void sys_init(void) //12MHz
{
OSCICL=0x43;
OSCICN=0xc2;
CLKSEL=0x00;
}
void pwm1_1(void) //PWM的初始化
{
PCA0MD=0x08; //PCA時鍾為12分頻
PCA0CPL0=200; //左輪
PCA0CPM0=0x42; //設置左輪為8位PWM輸出
PCA0CPH0=200;
PCA0CPL1=200; //平衡校正
PCA0CPM1=0x42; //設置為8位PWM輸出
PCA0CPH1=200;
PCA0CN=0x40; //允許PCA工作
}
void t01_init(void)
{
TCON=0x50; //計數器1、2允許
TMOD=0x55; //定時器1、2採用16位計數功能
CKCON=0x00;
TH1=0x00; //用於採集左輪的速度
TL1=0x00;
TH0=0x00; //用於採集右輪的速度
TL0=0x00;
}
void TIME3_INT(void)
{
TMR3CN = 0x00; //定時器3為16位自動重載
CKCON &= ~0x40;
TMR3RLL = 0xff;
TMR3RLH = 0xd7;
TMR3L = 0xff;
TMR3H = 0xd7;
TMR3CN |= 0x04;
}
void T3_ISR() interrupt 14 //定時器3中斷服務程序
{
//led=~led;
EA=0;
TCON &=~0x50; //關閉計數器0、1
vl1=TL0; //取左輪速度值
vl2=TH0;
vr1=TL1; //取右輪速度值
vr2=TH1;
TH1=0x00;
TL1=0x00;
TH0=0x00;
TL0=0x00;
PID(); //PID處理
TMR3CN &=~0x80; //清中斷標志位
TCON |=0x50; //重新開計數器0、1
EA=1;
}
void interrupt_init(void)
{ IE=0x80;
IP=0x00;
EIE1|=0x80;
EIP1|=0x80;
}
void delay(unsigned int m) //延時程序
{
for(i=0;i<2000;i++)
{
for(j=0;j<m;j++){_nop_(); _nop_();}
}
}
③ 求助單片機練習題。第四題的演算法應該是怎麼樣的。詳細點
圖中,公式,應該是:
2 × ((1 + 2) × 200 + 1 + 2) = 1206 微秒。
④ 用單片機做PID演算法控制問題
1.可以直接套用PID公式,無論增量還是絕對的。PID演算法是根據誤差來控制的演算法,不依賴系統的模型,故不用算系統的傳遞函數。有的書提到傳遞函數,一般是用於理論建模模擬,從而直接用Matlab一類的模擬軟體進行PID參數調試。得到的參數可以為實際應用提供一定參考價值。
2.PID參數整定有一套原則。首先要了解各個參數的作用。具體的整定方法,隨便找本自控原理的書都會提到,我不太記得了,大致是有一個倍數關系。但實際操作,一般不會是用這個數,是需要根據系統的反應,改變各個參數來試的。盡信書不如無書啊~
另外,不同系統的參數肯定不一樣。就算同一個系統,稍微有一些改變,可能最好的那組參數就會變化。因此衍生了很多先進PID演算法,如神經PID、專家PID、模糊PID等等。
⑤ 8位單片機PID控制PWM的演算法如何實現,C語言計算
PID控制在8位單片機中仍然有廣泛的應用,比如溫度控制,利用比例、積分、微分補償來做恆溫補償控制,當然由於有這些數學處理,用C語言相對方便一些,以下是一個具體的實例。
#include<reg51.h>
#include<intrins.h>
#include<math.h>
#include<string.h>
struct PID {
unsigned int SetPoint; // 設定目標 Desired Value
unsigned int Proportion; // 比例常數 Proportional Const
unsigned int Integral; // 積分常數 Integral Const
unsigned int Derivative; // 微分常數 Derivative Const
unsigned int LastError; // Error[-1]
unsigned int PrevError; // Error[-2]
unsigned int SumError; // Sums of Errors
};
struct PID spid; // PID Control Structure
unsigned int rout; // PID Response (Output)
unsigned int rin; // PID Feedback (Input)
sbit data1=P1^0;
sbit clk=P1^1;
sbit plus=P2^0;
sbit subs=P2^1;
sbit stop=P2^2;
sbit output=P3^4;
sbit DQ=P3^3;
unsigned char flag,flag_1=0;
unsigned char high_time,low_time,count=0;//占空比調節參數
unsigned char set_temper=35;
unsigned char temper;
unsigned char i;
unsigned char j=0;
unsigned int s;
/***********************************************************
延時子程序,延時時間以12M晶振為准,延時時間為30us×time
***********************************************************/
void delay(unsigned char time)
{
unsigned char m,n;
for(n=0;n<time;n++)
for(m=0;m<2;m++){}
}
/***********************************************************
寫一位數據子程序
***********************************************************/
void write_bit(unsigned char bitval)
{
EA=0;
DQ=0; /*拉低DQ以開始一個寫時序*/
if(bitval==1)
{
_nop_();
DQ=1; /*如要寫1,則將匯流排置高*/
}
delay(5); /*延時90us供DA18B20采樣*/
DQ=1; /*釋放DQ匯流排*/
_nop_();
_nop_();
EA=1;
}
/***********************************************************
寫一位元組數據子程序
***********************************************************/
void write_byte(unsigned char val)
{
unsigned char i;
unsigned char temp;
EA=0;
TR0=0;
for(i=0;i<8;i++) /*寫一位元組數據,一次寫一位*/
{
temp=val>>i; /*移位操作,將本次要寫的位移到最低位*/
temp=temp&1;
write_bit(temp); /*向匯流排寫該位*/
}
delay(7); /*延時120us後*/
// TR0=1;
EA=1;
}
/***********************************************************
讀一位數據子程序
***********************************************************/
unsigned char read_bit()
{
unsigned char i,value_bit;
EA=0;
DQ=0; /*拉低DQ,開始讀時序*/
_nop_();
_nop_();
DQ=1; /*釋放匯流排*/
for(i=0;i<2;i++){}
value_bit=DQ;
EA=1;
return(value_bit);
}
/***********************************************************
讀一位元組數據子程序
***********************************************************/
unsigned char read_byte()
{
unsigned char i,value=0;
EA=0;
for(i=0;i<8;i++)
{
if(read_bit()) /*讀一位元組數據,一個時序中讀一次,並作移位處理*/
value|=0x01<<i;
delay(4); /*延時80us以完成此次都時序,之後再讀下一數據*/
}
EA=1;
return(value);
}
/***********************************************************
復位子程序
***********************************************************/
unsigned char reset()
{
unsigned char presence;
EA=0;
DQ=0; /*拉低DQ匯流排開始復位*/
delay(30); /*保持低電平480us*/
DQ=1; /*釋放匯流排*/
delay(3);
presence=DQ; /*獲取應答信號*/
delay(28); /*延時以完成整個時序*/
EA=1;
return(presence); /*返回應答信號,有晶元應答返回0,無晶元則返回1*/
}
/***********************************************************
獲取溫度子程序
***********************************************************/
void get_temper()
{
unsigned char i,j;
do
{
i=reset(); /*復位*/
} while(i!=0); /*1為無反饋信號*/
i=0xcc; /*發送設備定位命令*/
write_byte(i);
i=0x44; /*發送開始轉換命令*/
write_byte(i);
delay(180); /*延時*/
do
{
i=reset(); /*復位*/
} while(i!=0);
i=0xcc; /*設備定位*/
write_byte(i);
i=0xbe; /*讀出緩沖區內容*/
write_byte(i);
j=read_byte();
i=read_byte();
i=(i<<4)&0x7f;
s=(unsigned int)(j&0x0f); //得到小數部分
s=(s*100)/16;
j=j>>4;
temper=i|j; /*獲取的溫度放在temper中*/
}
/*====================================================================================================
Initialize PID Structure
=====================================================================================================*/
void PIDInit (struct PID *pp)
{
memset ( pp,0,sizeof(struct PID)); //全部初始化為0
}
/*====================================================================================================
PID計算部分
=====================================================================================================*/
unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )
{
unsigned int dError,Error;
Error = pp->SetPoint - NextPoint; // 偏差
pp->SumError += Error; // 積分
dError = pp->LastError - pp->PrevError; // 當前微分
pp->PrevError = pp->LastError;
pp->LastError = Error;
return (pp->Proportion * Error // 比例項
+ pp->Integral * pp->SumError // 積分項
+ pp->Derivative * dError); // 微分項
}
/***********************************************************
溫度比較處理子程序
***********************************************************/
void compare_temper()
{
unsigned char i;
if(set_temper>temper) //是否設置的溫度大於實際溫度
{
if(set_temper-temper>1) //設置的溫度比實際的溫度是否是大於1度
{
high_time=100; //如果是,則全速加熱
low_time=0;
}
else //如果是在1度范圍內,則運行PID計算
{
for(i=0;i<10;i++)
{
get_temper(); //獲取溫度
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation
}
if (high_time<=100)
high_time=(unsigned char)(rout/800);
else
high_time=100;
low_time= (100-high_time);
}
}
else if(set_temper<=temper)
{
if(temper-set_temper>0)
{
high_time=0;
low_time=100;
}
else
{
for(i=0;i<10;i++)
{
get_temper();
rin = s; // Read Input
rout = PIDCalc ( &spid,rin ); // Perform PID Interation
}
if (high_time<100)
high_time=(unsigned char)(rout/10000);
else
high_time=0;
low_time= (100-high_time);
}
}
// else
// {}
}
/*****************************************************
T0中斷服務子程序,用於控制電平的翻轉 ,40us*100=4ms周期
******************************************************/
void serve_T0() interrupt 1 using 1
{
if(++count<=(high_time))
output=1;
else if(count<=100)
{
output=0;
}
else
count=0;
TH0=0x2f;
TL0=0xe0;
}
/*****************************************************
串列口中斷服務程序,用於上位機通訊
******************************************************/
void serve_sio() interrupt 4 using 2
{
/* EA=0;
RI=0;
i=SBUF;
if(i==2)
{
while(RI==0){}
RI=0;
set_temper=SBUF;
SBUF=0x02;
while(TI==0){}
TI=0;
}
else if(i==3)
{
TI=0;
SBUF=temper;
while(TI==0){}
TI=0;
}
EA=1; */
}
void disp_1(unsigned char disp_num1[6])
{
unsigned char n,a,m;
for(n=0;n<6;n++)
{
// k=disp_num1[n];
for(a=0;a<8;a++)
{
clk=0;
m=(disp_num1[n]&1);
disp_num1[n]=disp_num1[n]>>1;
if(m==1)
data1=1;
else
data1=0;
_nop_();
clk=1;
_nop_();
}
}
}
/*****************************************************
顯示子程序
功能:將占空比溫度轉化為單個字元,顯示占空比和測得到的溫度
******************************************************/
void display()
{
unsigned char code number[]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6};
unsigned char disp_num[6];
unsigned int k,k1;
k=high_time;
k=k%1000;
k1=k/100;
if(k1==0)
disp_num[0]=0;
else
disp_num[0]=0x60;
k=k%100;
disp_num[1]=number[k/10];
disp_num[2]=number[k%10];
k=temper;
k=k%100;
disp_num[3]=number[k/10];
disp_num[4]=number[k%10]+1;
disp_num[5]=number[s/10];
disp_1(disp_num);
}
/***********************************************************
主程序
***********************************************************/
void main()
{
unsigned char z;
unsigned char a,b,flag_2=1,count1=0;
unsigned char phil[]={2,0xce,0x6e,0x60,0x1c,2};
TMOD=0x21;
TH0=0x2f;
TL0=0x40;
SCON=0x50;
PCON=0x00;
TH1=0xfd;
TL1=0xfd;
PS=1;
EA=1;
EX1=0;
ET0=1;
ES=1;
TR0=1;
TR1=1;
high_time=50;
low_time=50;
PIDInit ( &spid ); // Initialize Structure
spid.Proportion = 10; // Set PID Coefficients 比例常數 Proportional Const
spid.Integral = 8; //積分常數 Integral Const
spid.Derivative =6; //微分常數 Derivative Const
spid.SetPoint = 100; // Set PID Setpoint 設定目標 Desired Value
while(1)
{
if(plus==0)
{
EA=0;
for(a=0;a<5;a++)
for(b=0;b<102;b++){}
if(plus==0)
{
set_temper++;
flag=0;
}
}
else if(subs==0)
{
for(a=0;a<5;a++)
for(b=0;a<102;b++){}
if(subs==0)
{
set_temper--;
flag=0;
}
}
else if(stop==0)
{
for(a=0;a<5;a++)
for(b=0;b<102;b++){}
if(stop==0)
{
flag=0;
break;
}
EA=1;
}
get_temper();
b=temper;
if(flag_2==1)
a=b;
if((abs(a-b))>5)
temper=a;
else
temper=b;
a=temper;
flag_2=0;
if(++count1>30)
{
display();
count1=0;
}
compare_temper();
}
TR0=0;
z=1;
while(1)
{
EA=0;
if(stop==0)
{
for(a=0;a<5;a++)
for(b=0;b<102;b++){}
if(stop==0)
disp_1(phil);
// break;
}
EA=1;
}
}
⑥ 單片機如何測量波形的頻率和占空比
1、首先要確定波形是否有毛刺等干擾?
2、其次要確定波形的頻率大概范圍?
3、還要確定波形是周期波?還是任意波?
只有知道這些基本的參數,才可以進行單片機的選型、晶振選型、軟體定時中斷的周期選擇,然後給出相應的思路和方法。
如果波形比較理想,沒有毛刺,測頻率一般採取過零點;
如果波形有毛刺,可以考慮先把毛刺過濾掉,過濾電路或軟體視具體情況而定。
如果頻率比較高,可以設置一個較長定時,比如100ms,500ms,1s等,根據波形頻率選擇,然後在此定時內,統計有多少個過零點,進而得出頻率;
如果頻率比較低,可以設置一個計數器,統計波形兩次過零點之間的計數器的計數值,進而得出頻率。
占空比思路和上面類似,根據統計幅度為0的時長,以及非0的時長,進而求出占空比。
⑦ 單片機中的PID演算法是什麼意思啊,有什麼用途呢謝謝!
pid就是比例積分微分演算法
⑧ 51單片機的溫度控制系統一定要用到pid演算法嗎 還有其它方法嗎
51單片機的溫度控制系統中,比較好的控制演算法就pid演算法,這是自動控制原理中的經典演算法,其它演算法控制過程不夠理想,過於簡單,溫度變化波動較大。