Ⅰ 伺服器證書SHA1和SHA2演算法有和區別
SHA1演算法是為了兼容部分低版本的伺服器,而在幾年前SHA1演算法逐漸淘汰,由於發展,SHA1演算法已經滿足不了安全需求,從而有更高版本SHA2替代。SHA2演算法的證書更加安全,目前能夠兼容xp sp3以上的客戶端系統。如果需要安裝SHA2演算法可以找天威誠信的技術人員進行安裝。
Ⅱ 哈希加密演算法
MD5即Message-Digest Algorithm 5(信息摘要演算法5),是計算機廣泛使用的散列演算法之一。經MD2、MD3和MD4發展而來,誕生於20世紀90年代初。用於確保信息傳輸完整一致。雖然已被破解,但仍然具有較好的安全性,加之可以免費使用,所以仍廣泛運用於數字簽名、文件完整性驗證以及口令加密等領域。
演算法原理:
散列演算法得到的結果位數是有限的,比如MD5演算法計算出的結果字長為128位,意味著只要我們窮舉2^128次,就肯定能得到一組碰撞,下面讓我們來看看一個真實的碰撞案例。我們之所以說MD5過時,是因為它在某些時候已經很難表現出散列演算法的某些優勢——比如在應對文件的微小修改時,散列演算法得到的指紋結果應當有顯著的不同,而下面的程序說明了MD5並不能實現這一點。
而諸如此類的碰撞案例還有很多,上面只是原始文件相對較小的一個例子。事實上現在我們用智能手機只要數秒就能找到MD5的一個碰撞案例,因此,MD5在數年前就已經不被推薦作為應用中的散列演算法方案,取代它的是SHA家族演算法,也就是安全散列演算法(Secure Hash Algorithm,縮寫為SHA)。
SHA實際包括有一系列演算法,分別是SHA-1、SHA-224、SHA-256、SHA-384以及SHA-512。而我們所說的SHA2實際是對後面4中的統稱。各種SHA演算法的數據比較如下表,其中的長度單位均為位:
MD5和SHA1,它們都有4個邏輯函數,而在SHA2的一系列演算法中都採用了6個邏輯函數。
以SHA-1為例,演算法包括有如下的處理過程:
和MD5處理輸入方式相同
經過添加位數處理的明文,其長度正好為512位的整數倍,然後按512位的長度進行分組,可以得到一定數量的明文分組,我們用Y 0 ,Y 1 ,……Y N-1 表示這些明文分組。對於每一個明文分組,都要重復反復的處理,這些與MD5都是相同的。
而對於每個512位的明文分組,SHA1將其再分成16份更小的明文分組,稱為子明文分組,每個子明文分組為32位,我們且使用M[t](t= 0, 1,……15)來表示這16個子明文分組。然後需要將這16個子明文分組擴充到80個子明文分組,我們將其記為W[t](t= 0, 1,……79),擴充的具體方法是:當0≤t≤15時,Wt = Mt;當16≤t≤79時,Wt = ( W t-3 ⊕ W t-8 ⊕ W t-14 ⊕ W t-16 ) <<< 1,從而得到80個子明文分組。
所謂初始化緩存就是為鏈接變數賦初值。前面我們實現MD5演算法時,說過由於摘要是128位,以32位為計算單位,所以需要4個鏈接變數。同樣SHA-1採用160位的信息摘要,也以32位為計算長度,就需要5個鏈接變數。我們記為A、B、C、D、E。其初始賦值分別為:A = 0x67452301、B = 0xEFCDAB89、C = 0x98BADCFE、D = 0x10325476、E = 0xC3D2E1F0。
如果我們對比前面說過的MD5演算法就會發現,前4個鏈接變數的初始值是一樣的,因為它們本來就是同源的。
經過前面的准備,接下來就是計算信息摘要了。SHA1有4輪運算,每一輪包括20個步驟,一共80步,最終產生160位的信息摘要,這160位的摘要存放在5個32位的鏈接變數中。
在SHA1的4論運算中,雖然進行的就具體操作函數不同,但邏輯過程卻是一致的。首先,定義5個變數,假設為H0、H1、H2、H3、H4,對其分別進行如下操作:
(A)、將A左移5為與 函數的結果求和,再與對應的子明文分組、E以及計算常數求和後的結果賦予H0。
(B)、將A的值賦予H1。
(C)、將B左移30位,並賦予H2。
(D)、將C的值賦予H3。
(E)、將D的值賦予H4。
(F)、最後將H0、H1、H2、H3、H4的值分別賦予A、B、C、D
這一過程表示如下:
而在4輪80步的計算中使用到的函數和固定常數如下表所示:
經過4輪80步計算後得到的結果,再與各鏈接變數的初始值求和,就得到了我們最終的信息摘要。而對於有多個明文分組的,則將前面所得到的結果作為初始值進行下一明文分組的計算,最終計算全部的明文分組就得到了最終的結果。