⑴ 印度兩位數乘法的速算技巧
印度兩位數乘法的速算技巧如下:
1、十位數相乘法:將兩個兩位數的十位數相乘,再將個位數相乘,最後將兩個結果相加。例如,計算23×45,可以先計算20×50=1000,再計算3×5=15,最後將1000+15=1015。
2、倍數法:將一個兩位數分解成兩個一位數的和,然後分別與另一個兩位數相乘,最後將兩個結果相加。例如,計算23×45,可以將23分解成20+3,然後分別與45相乘得到900和135,最後將900+135=1035。
3、數學思維訓練:印度兩位數乘法可以幫助人們更好地理解乘法的本質,從而提高數學素養。它不僅是印度古代數學文化的重要組成部分,也是人類數學思維發展的重要歷程。
4、實用性強:印度兩位數乘法不依賴於任何工具,只需要紙和筆就可以完成計算,因此具有很高的實用性。無論是在家庭、學校還是工作場所,都可以廣泛應用這種計算方法。
⑵ 誰知道多位數乘法的快速計算方法
多位數乘法的快速計算方法如下:
1、十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2、頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4、幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意數:口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。
6、十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一 個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。
⑶ 多位數乘法的快速計算方法有哪些
多位數乘法的快速計算方法如下:
1、 十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位。
2、 頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位。
3、 第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位。
4、 幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861
5、 11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一。
乘法原理:
如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。
在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。
設 A是 m×n 的矩陣。
可以通過證明 Ax=0 和A'Ax=0 兩個n元齊次方程同解證得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故兩個方程是同解的。
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以綜上 r(A)=r(A')=r(AA')=r(A'A)