Ⅰ 珠算的演算法口訣
珠算四則運算皆用一套口訣指導撥珠完成。加減法,明代稱「上法」和「退法」,其口訣為珠算所特有,最早見於吳敬《九章演算法比類大全》(1450)。乘法所用的「九九」口訣,起源甚早,春秋戰國時已在籌算中應用。北宋科學家沈括在其《夢溪筆談》卷十八中介紹「增成法」時說:「唯增成一法稍異,其術都不用乘除,但補虧就盈而已。假如欲九除者增一便是,八除者增二便是,但一位一因之」。「九除者增一」,後來變為「九一下加一」,「八除者增二」後來變為「八一下加二」等口訣。可見「增成法」就是「歸除法」的前身。楊輝在《乘除通變算寶》中,敘述了「九歸」,他在當時流傳的四句「古括」上,添注了新的口訣三十二句,與現今口訣接近。元代朱世傑的《算學啟蒙》(1299,卷上)載有九歸口訣三十六句,和現今通行的口訣大致相同。14世紀中丁巨撰演算法八卷(1355),內有「撞歸口訣」。總之,歸除口訣的全部完成在元代。有了四則口訣,珠算的演算法就形成了一個體系,長期沿用了下來。
Ⅱ 35*35、32*38、31*39運算有什麼規律的簡單演算法
這樣的兩個兩數:十位上的數字相同,個位數字之和等於10,相乘的法則是:先寫個位數字的乘積,然後在這個乘積前面添加:十位數字加1的和乘以十位數字之積,這說起來似乎很復雜,但實際計算起來非常簡單。35×35先寫25,再在25前面添加(3+1)×3之積12,得1225;以下這些可以直接寫結果了:32×38=1216;31×39=1209;76×74=5624;53×57=3021;85×85=7225,等等。
Ⅲ 43×36×5的簡便演算法
先是36×5。先用36×5等於是180。然後再用180×43相當於是先用18×3等於個54所以就是180×3等於個540。然後再是40×180相當於18×4。等一四得四四八三十二等於72所以就是7200。然後就是540+7200等於7740。
Ⅳ 什麼叫乘法
乘法(multiplication),是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數(包括負數),有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。
乘法是算術中最簡單的運算之一。 最早來自於整數的乘法運算。簡單的是正整數的乘法,即幾個相同的數連加的簡便演算法,用連加的次數來乘被加數。例如2連加5次,就用5來乘。
中國使用「九九口訣」的時間較早。在《荀子》、《管子》、《淮南子》、《戰國策》等書中就能找到「三九二十七」、「六八四十八」、「四八三十二」、「六六三十六」等句子。由此可見,早在「春秋」、「戰國」的時候,《九九乘法歌訣》就已經開始流行了。
整數的乘法運算滿足:交換律,結合律, 分配律,消去律。隨著數學的發展, 運算的對象從整數發展為更一般群。群中的乘法運算不再要求滿足交換律。 最有名的非交換例子,就是哈密爾頓發現的四元數群。 但是結合律仍然滿足。
將數字乘以多於幾位小數位是繁瑣而且容易出錯的。發明了通用對數以簡化這種計算。幻燈片規則允許數字快速乘以大約三個准確度的地方。從二十世紀初開始,機械計算器,如Marchant,自動倍增多達10位數。現代電子計算機和計算器大大減少了用手倍增的需要。
Ⅳ 乘法的含義
乘法含義:
1、「求幾個相同加數的和的簡便運算」這一本質在過去和今天的教材都是一樣的。在形式上,新教材允許把「4+4+4+4+4」改寫成「4×5」也可以寫成「5×4」。反過來,也就是說「5×4」可以表示「4個5相加的和」也可以表示「5個4相加的和」。
(1)整數乘法的意義:求幾個相同加數的和的簡便運算。如3×4既可以說:4個3相加的和是多少;也可以表述成:3的4倍是多少。
(2)小數乘整數的意義和整數乘整數的意義相同,都是求幾個相同加數的和的簡便運算。如:2.5×6,表示6個2.5相加的和是多少;也可以表述成2.5的6倍是多少。
2、分數乘法同樣不必再區分被乘數和乘數。
3、乘法不是加法的簡單記法
(1)乘法原理:如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。
(2)加法原理:如果因變數f與自變數(z1,z2,z3…,zn)之間存在直接正比關系並且每個自變數存在相同的質,缺少任何一個自變數因變數f仍然有其意義,則為加法。
(5)三十二乘五簡演算法擴展閱讀
數學乘法的速算方法
一、十位數是1的兩位數相乘
乘數的個位與被乘數相加,得數為前積,乘數的個位與被乘數的個位相乘,得數為後積,滿十前一。
15×17= 255
15 + 7 = 22
5 × 7 = 35
即:220+35=255
二、個位是1的兩位數相乘
方法:十位與十位相乘,得數為前積,十位與十位相加,得數接著寫,滿十進一,在最後添上1。 例1:
51 × 31 = 1581
50 × 30 = 1500
50 + 30 = 80
1500 + 80 = 1580
因為1 × 1 = 1 ,所以後一位一定是1,在得數的後面添上1,
即1580 + 1 =1581。
數字「0」在不熟練的時候作為助記符,熟練後就可以不使用了。
三、十位相同個位不同的兩位數相乘
被乘數加上乘數個位,和與十位數整數相乘,積作為前積,個位數與個位數相乘作為後積加上去。
43 × 46 = 1978
(43 + 6)× 40 = 1960
3 × 6 = 18
1960+ 18 = 1978
Ⅵ 32×5約等於多少
如果是直接計算的話就直接能夠得出來的答案是一百六,但是如果你說的是約等於的話那可以把三十二變成三十,三十乘以五就一百五。