導航:首頁 > 源碼編譯 > 編譯linux需要多長時間

編譯linux需要多長時間

發布時間:2024-10-10 22:24:36

⑴ 如何編譯linux版本

編譯安裝內核
下載並解壓內核
內核下載官網:https://www.kernel.org/
解壓內核:tar xf linux-2.6.XX.tar.xz
定製內核:make menuconfig
參見makefile menuconfig過程講解
編譯內核和模塊:make
生成內核模塊和vmlinuz,initrd.img,Symtem.map文件
安裝內核和模塊:sudo make moles_install install
復制模塊文件到/lib/moles目錄下、復制config,vmlinuz,initrd.img,Symtem.map文件到/boot目錄、更新grub
其他命令
make mrprobe:命令的作用是在每次配置並重新編譯內核前需要先執行「make mrproper」命令清理源代碼樹,包括過去曾經配置的內核配置文件「.config」都將被清除。即進行新的編譯工作時將原來老的配置文件給刪除到,以免影響新的內核編譯。
make dep:生成內核功能間的依賴關系,為編譯內核做好准備。

幾個重要的Linux內核文件介紹
config
使用make menuconfig 生成的內核配置文件,決定將內核的各個功能系統編譯進內核還是編譯為模塊還是不編譯。
vmlinuz 和 vmlinux
vmlinuz是可引導的、壓縮的內核,「vm」代表「Virtual Memory」。Linux 支持虛擬內存,不像老的操作系統比如DOS有640KB內存的限制,Linux能夠使用硬碟空間作為虛擬內存,因此得名「vm」。vmlinuz是可執行的Linux內核,vmlinuz的建立有兩種方式:一是編譯內核時通過「make zImage」創建,zImage適用於小內核的情況,它的存在是為了向後的兼容性;二是內核編譯時通過命令make bzImage創建,bzImage是壓縮的內核映像,需要注意,bzImage不是用bzip2壓縮的,bzImage中的bz容易引起誤解,bz表示「big zImage」,bzImage中的b是「big」意思。 zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip壓縮的。它們不僅是一個壓縮文件,而且在這兩個文件的開頭部分內嵌有gzip解壓縮代碼,所以你不能用gunzip 或 gzip –dc解包vmlinuz。 內核文件中包含一個微型的gzip用於解壓縮內核並引導它。兩者的不同之處在於,老的zImage解壓縮內核到低端內存(第一個640K),bzImage解壓縮內核到高端內存(1M以上)。如果內核比較小,那麼可以採用zImage 或bzImage之一,兩種方式引導的系統運行時是相同的。大的內核採用bzImage,不能採用zImage。 vmlinux是未壓縮的內核,vmlinuz是vmlinux的壓縮文件。
initrd.img
initrd是「initial ramdisk」的簡寫。initrd一般被用來臨時的引導硬體到實際內核vmlinuz能夠接管並繼續引導的狀態。比如initrd- 2.4.7-10.img主要是用於載入ext3等文件系統及scsi設備的驅動。如果你使用的是scsi硬碟,而內核vmlinuz中並沒有這個 scsi硬體的驅動,那麼在裝入scsi模塊之前,內核不能載入根文件系統,但scsi模塊存儲在根文件系統的/lib/moles下。為了解決這個問題,可以引導一個能夠讀實際內核的initrd內核並用initrd修正scsi引導問題,initrd-2.4.7-10.img是用gzip壓縮的文件。initrd映象文件是使用mkinitrd創建的,mkinitrd實用程序能夠創建initrd映象文件,這個命令是RedHat專有的,其它Linux發行版或許有相應的命令。這是個很方便的實用程序。具體情況請看幫助:man mkinitrd
System.map是一個特定內核的內核符號表,由「nm vmlinux」產生並且不相關的符號被濾出。
下面幾行來自/usr/src/linux-2.4/Makefile:
nm vmlinux | grep -v '(compiled)|(.o$$)|( [aUw] )|(..ng$$)|(LASH[RL]DI)' | sort > System.map
在進行程序設計時,會命名一些變數名或函數名之類的符號。Linux內核是一個很復雜的代碼塊,有許許多多的全局符號, Linux內核不使用符號名,而是通過變數或函數的地址來識別變數或函數名,比如不是使用size_t BytesRead這樣的符號,而是像c0343f20這樣引用這個變數。 對於使用計算機的人來說,更喜歡使用那些像size_t BytesRead這樣的名字,而不喜歡像c0343f20這樣的名字。內核主要是用c寫的,所以編譯器/連接器允許我們編碼時使用符號名,而內核運行時使用地址。 然而,在有的情況下,我們需要知道符號的地址,或者需要知道地址對應的符號,這由符號表來完成,符號表是所有符號連同它們的地址的列表。
Linux 符號表使用到2個文件: /proc/ksyms 、System.map 。/proc/ksyms是一個「proc file」,在內核引導時創建。實際上,它並不真正的是一個文件,它只不過是內核數據的表示,卻給人們是一個磁碟文件的假象,這從它的文件大小是0可以看 出來。然而,System.map是存在於你的文件系統上的實際文件。當你編譯一個新內核時,各個符號名的地址要發生變化,你的老的System.map 具有的是錯誤的符號信息,每次內核編譯時產生一個新的System.map,你應當用新的System.map來取代老的System.map。
雖然內核本身並不真正使用System.map,但其它程序比如klogd, lsof和ps等軟體需要一個正確的System.map。如果你使用錯誤的或沒有System.map,klogd的輸出將是不可靠的,這對於排除程序故障會帶來困難。沒有System.map,你可能會面臨一些令人煩惱的提示信息。 另外少數驅動需要System.map來解析符號,沒有為你當前運行的特定內核創建的System.map它們就不能正常工作。 Linux的內核日誌守護進程klogd為了執行名稱-地址解析,klogd需要使用System.map。System.map應當放在使用它的軟體能夠找到它的地方。執行:man klogd可知,如果沒有將System.map作為一個變數的位置給klogd,那麼它將按照下面的順序,在三個地方查找System.map: /boot/System.map 、/System.map 、/usr/src/linux/System.map
System.map也有版本信息,klogd能夠智能地查找正確的映象(map)文件。
makefile menuconfig過程講解
當我們在執行make menuconfig這個命令時,系統到底幫我們做了哪些工作呢?這裡面一共涉及到了一下幾個文件我們來一一探討
Linux內核根目錄下的scripts文件夾
arch/$ARCH/Kconfig文件、各層目錄下的Kconfig文件
Linux內核根目錄下的makefile文件、各層目錄下的makefile文件
Linux內核根目錄下的的.config文件、arch/$ARCH/configs/下的文件
Linux內核根目錄下的 include/generated/autoconf.h文件
1)scripts文件夾存放的是跟make menuconfig配置界面的圖形繪制相關的文件,我們作為使用者無需關心這個文件夾的內容
2)當我們執行make menuconfig命令出現上述藍色配置界面以前,系統幫我們做了以下工作:
首先系統會讀取arch/$ARCH/目錄下的Kconfig文件生成整個配置界面選項(Kconfig是整個linux配置機制的核心),那麼ARCH環境變數的值等於多少呢?它是由linux內核根目錄下的makefile文件決定的,在makefile下有此環境變數的定義:
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
..........
export KBUILD_BUILDHOST := $(SUBARCH)
ARCH ?= $(SUBARCH)
CROSS_COMPILE ?=
或者通過 make ARCH=arm menuconfig命令來生成配置界面
比如教務處進行考試,考試科數可能有外語、語文、數學等科,這里我們選擇了arm科可進行考試,系統就會讀取arm/arm/kconfig文件生成配置選項(選擇了arm科的卷子),系統還提供了x86科、milps科等10幾門功課的考試題
3)假設教務處比較「仁慈」,為了怕某些同學做錯試題,還給我們准備了一份參考答案(默認配置選項),存放在arch/$ARCH/configs/目錄下,對於arm科來說就是arch/arm/configs文件夾:

此文件夾中有許多選項,系統會讀取哪個呢?內核默認會讀取linux內核根目錄下.config文件作為內核的默認選項(試題的參考答案),我們一般會根據開發板的類型從中選取一個與我們開發板最接近的系列到Linux內核根目錄下(選擇一個最接近的參考答案)
4).config
假設教務處留了一個心眼,他提供的參考答案並不完全正確(.config文件與我們的板子並不是完全匹配),這時我們可以選擇直接修改.config文件然後執行make menuconfig命令讀取新的選項。但是一般我們不採取這個方案,我們選擇在配置界面中通過空格、esc、回車選擇某些選項選中或者不選中,最後保存退出的時候,Linux內核會把新的選項(正確的參考答案)更新到.config中,此時我們可以把.config重命名為其它文件保存起來(當你執行make distclean時系統會把.config文件刪除),以後我們再配置內核時就不需要再去arch/arm/configs下考取相應的文件了,省去了重新配置的麻煩,直接將保存的.config文件復制為.config即可.
5)經過以上兩步,我們可以正確的讀取、配置我們需要的界面了,那麼他們如何跟makefile文件建立編譯關系呢?當你保存make menuconfig選項時,系統會除了會自動更新.config外,還會將所有的選項以宏的形式保存在Linux內核根目錄下的 include/generated/autoconf.h文件下

內核中的源代碼就都會包含以上.h文件,跟宏的定義情況進行條件編譯。
當我們需要對一個文件整體選擇如是否編譯時,還需要修改對應的makefile文件,例如:

我們選擇是否要編譯s3c2410_ts.c這個文件時,makefile會根據CONFIG_TOUCHSCREEN_S3C2410來決定是編譯此文件,此宏是在Kconfig文件中定義,當我們配置完成後,會出現在.config及autconf中,至此,我們就完成了整個linux內核的編譯過程。
最後我們會發現,整個linux內核配置過程中,留給用戶的介面其實只有各層Kconfig、makefile文件以及對應的源文件。
比如我們如果想要給內核增加一個功能,並且通過make menuconfig控制其聲稱過程
首先需要做的工作是:修改對應目錄下的Kconfig文件,按照Kconfig語法增加對應的選項;
其次執行make menuconfig選擇編譯進內核或者不編譯進內核,或者編譯為模塊,.config文件和autoconf.h文件會自動生成;
最後修改對應目錄下的makefile文件完成編譯選項的添加;
最後的最後執行make命令進行編譯。
Kconfig和Makefile
Linux內核源碼樹的每個目錄下都有兩個文檔Kconfig和Makefile。分布到各目錄的Kconfig構成了一個分布式的內核配置資料庫,每個Kconfig分別描述了所屬目錄源文檔相關的內核配置菜單。在執行內核配置make menuconfig時,從Kconfig中讀出菜單,用戶選擇後保存到.config的內核配置文檔中。在內核編譯時,主Makefile調用這 個.config,就知道了用戶的選擇。這個內容說明了,Kconfig就是對應著內核的每級配置菜單。
假如要想添加新的驅動到內核的源碼中,要修改Kconfig,這樣就能夠選擇這個驅動,假如想使這個驅動被編譯,則要修改Makefile。添加新 的驅動時需要修改的文檔有兩種(如果添加的只是文件,則只需修改當前層Kconfig和Makefile文件;如果添加的是目錄,則需修改當前層和目錄下 的共一對Kconfig和Makefile)Kconfig和Makefile。要想知道怎麼修改這兩種文檔,就要知道兩種文檔的語法結構,Kconfig的語法參見參考文獻《【linux-2.6.31】kbuild》。
Makefile 文件包含 5 部分:
Makefile 頂層的 Makefile
.config 內核配置文件
arch/$(ARCH)/Makefile 體系結構 Makefile
scripts/Makefile.* 適用於所有 kbuild Makefile 的通用規則等
kbuild Makefiles 大約有 500 個這樣的文件
頂層 Makefile 讀取內核配置操作產生的.config 文件,頂層 Makefile 構建兩個主要的目標:vmlinux(內核映像)和 moles(所有模塊文件)。它通過遞歸訪問內核源碼樹下的子目錄來構建這些目標。訪問哪些子目錄取決於內核配置。頂層 Makefile 包含一個體系結構 Makefile,由 arch/$(ARCH)/Makefile 指定。體系結構 Makefile 文件為頂層 Makefile 提供了特定體系結構的信息。每個子目錄各有一個 kbuild文件和Makefile 文件來執行從上層傳遞下來的命令。kbuild和Makefile文件利用.config 文件中的信息來構造由 kbuild 構建內建或者模塊對象使用的各種文件列表。scripts/Makefile.*包含所有的定義/規則,等等。這些信息用於使用 kbuild和 Makefile 文件來構建內核。Makefile的語法參見參考文獻《【linux-2.6.31】kbuild》。

參考文獻
【linux-2.6.31】內核編譯指南.pdf
【linux-2.6.31】kbuild.pdf
Linker script in Linux.pdf
linux內核的配置機制及其編譯過程
Linux內核編譯過程詳解
Linux Kconfig及Makefile學習

⑵ ubuntu內核編譯需要多長時間

在分析linux內核源碼的過程中,要是能夠修改內核源碼並運行修改後的內核,我想肯定是令人高興的事,哪怕第一次修改僅僅是在啟動時列印一行"Hello, Wang Jiankun!",肯定也是令我高興的。為了能成功編譯修改後的內核,今天先編譯一遍內核。
為了有一個完整的記錄,今天的起點是一台裸機。
1、在裸機上安裝一個最小的debian系統
為了能夠盡可能清晰的顯示編譯一個內核所需要的組件,在安裝系統時,僅僅安裝最小系統,然後需要什麼,就使用apt-get安裝什麼。
使用網路安裝,在安裝過程中出現Software selection界面時不要選擇任何選項,這樣安裝的系統將是最小的系統。
為了使用ssh遠程登錄,最小系統安裝完成後,要安裝ssh伺服器並且要設置靜態ip地址(debian安裝過程中是通過dhcp獲取的ip地址)。
2、安裝ssh伺服器
apt-get install ssh
3、設置靜態ip地址
修改文件/etc/network/interfaces,其中藍色部分是增加的,紅色部分是屏蔽掉的,黑色部分是沒有變化的。
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).
# The loopback network interface
auto lo
iface lo inet loopback
# The primary network interface
allow-hotplug eth0
# Wang Jiankun commented the following line
#iface eth0 inet dhcp
# Wang Jiankun added the the following lines
iface eth0 inet static
address 192.168.1.251
netmask 255.255.255.0
broadcast 192.168.1.255
network 192.168.1.0
gateway 192.168.1.1
重啟系統後,修改將生效。
4、通過wget下載linux內核源碼
administrator@wangjk:~/kernel$ wget http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.19.tar.bz2
5、解壓文件linux-2.6.19.tar.bz2
administrator@wangjk:~/kernel$ tar jxf linux-2.6.19.tar.bz2
tar: bzip2: Cannot exec: No such file or directory
tar: Error is not recoverable: exiting now
tar: Child returned status 2
tar: Error exit delayed from previous errors
administrator@wangjk:~/kernel$
看來是沒有bzip2這個包,那就安裝一個:
apt-get install bzip2
6、安裝debian的kernel-package軟體包
在安裝kernel-package軟體包時,最好使用命令:apt-get build-dep kernel-package,而不要使用命令:
apt-get install kernel-package,後者安裝的軟體包是前者的子集,使用後者安裝kernel-package軟體包後,執行make menuconfig命令會出現頭文件找不到的錯誤,如下所示:
administrator@wangjk:~/kernel/linux-2.6.19$ make menuconfig
HOSTCC scripts/basic/fixdep
scripts/basic/fixdep.c:105:23: error: sys/types.h: No such file or directory
scripts/basic/fixdep.c:106:22: error: sys/stat.h: No such file or directory
scripts/basic/fixdep.c:107:22: error: sys/mman.h: No such file or directory
scripts/basic/fixdep.c:108:20: error: unistd.h: No such file or directory
scripts/basic/fixdep.c:109:19: error: fcntl.h: No such file or directory
scripts/basic/fixdep.c:110:20: error: string.h: No such file or directory
scripts/basic/fixdep.c:111:20: error: stdlib.h: No such file or directory
scripts/basic/fixdep.c:112:19: error: stdio.h: No such file or directory
主要是因為libc6-dev軟體包沒有安裝。所以即使使用了apt-get install kernel-package還得使用apt-get build-dep kernel-package,不如一次使用apt-get build-dep kernel-package完成方便。
7、安裝libncurses5-dev軟體包來支持make menuconfig
通過apt-get build-dep kernel-package安裝完成kernel-package後,執行make menuconfig仍然報錯,如下所示:
administrator@wangjk:~/kernel/linux-2.6.19$ make menuconfig
HOSTCC scripts/kconfig/lxdialog/checklist.o
In file included from scripts/kconfig/lxdialog/checklist.c:24:
scripts/kconfig/lxdialog/dialog.h:32:20: error: curses.h: No such file or directory
In file included from scripts/kconfig/lxdialog/checklist.c:24:
scripts/kconfig/lxdialog/dialog.h:97: error: expected specifier-qualifier-list before 'chtype'
scripts/kconfig/lxdialog/dialog.h:187: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:193: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:195: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:196: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:197: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:198: error: expected ')' before '*' token
scripts/kconfig/lxdialog/dialog.h:200: error: expected ')' before '*' token
scripts/kconfig/lxdialog/checklist.c:31: error: expected ')' before '*' token
scripts/kconfig/lxdialog/checklist.c:59: error: expected ')' before '*' token
scripts/kconfig/lxdialog/checklist.c:95: error: expected ')' before '*' token
[省略其後部分]
原來是最小系統不支持圖形的原因,安裝libncurses5-dev後即可。
8、將系統的config文件拷貝到內核目錄下
cp /boot/config-2.6.18-6-686 ./.config
9、執行make menuconfig
雖然是將原來系統的config文件拷貝過來的,但是如果所以的配置都採用默認的配置仍然會有問題,在我的系統上在載入文件系統時會死掉,所以還是要做必要的配置,主要是將scsi和sata部分編譯進內核而不要編譯成模塊,如下所示:
Device Drivers --->
Serial ATA (prod) and Parallel ATA (experimental) drivers --->
SCSI device support --->
將藍色兩部分級聯的選項全部編譯進內核(其實沒有必要全部,但為了簡單起見,暫時這樣做)。
10、安裝fakeroot軟體包
11、編譯內核
fakeroot make-kpkg --initrd --revision=custom.1.0 kernel_image
12、安裝內核
wangjk:/home/administrator/kernel# dpkg -i linux-image-2.6.19_custom.1.0_i386.deb
Selecting previously deselected package linux-image-2.6.19.
(Reading database ... 17679 files and directories currently installed.)
Unpacking linux-image-2.6.19 (from linux-image-2.6.19_custom.1.0_i386.deb) ...
Done.
Setting up linux-image-2.6.19 (custom.1.0) ...
Running depmod.
Finding valid ramdisk creators.
Using mkinitramfs-kpkg to build the ramdisk.
Running postinst hook script /sbin/update-grub.
You shouldn't call /sbin/update-grub. Please call /usr/sbin/update-grub instead!
Searching for GRUB installation directory ... found: /boot/grub
Searching for default file ... found: /boot/grub/default
Testing for an existing GRUB menu.lst file ... found: /boot/grub/menu.lst
Searching for splash image ... none found, skipping ...
Found kernel: /boot/vmlinuz-2.6.19
Found kernel: /boot/vmlinuz-2.6.18-6-686
Updating /boot/grub/menu.lst ... done
13、重啟系統引導新內核後查看版本號
administrator@wangjk:~$ cat /proc/version
Linux version 2.6.19 (root@wangjk) (gcc version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Thu May 7 21:52:10 CST 2009
administrator@wangjk:~$
可以看出已經是我編譯的內核了。

本文來自CSDN博客,轉載請標明出處:http://blog.csdn.net/jiankun_wang/archive/2009/05/04/4147806.aspx

------------------------------------

ubuntu不帶linux內核源碼,需要自己下載安裝。
1,查看自己的內核版本
uname -r
2,查看源內的內核源碼類表
apt-cache search linux-source
3,下載安裝內核源代碼
sudo apt-get install linux-source-2.6.27 //我選的是這一個,自己看著辦吧
4,等待........

下載完成後,在/usr/src下會有一個文件名為linux-source-2.6.xx.tar.bz2的壓縮包
5,解壓縮包
tar jxvf linux-source-2.6.27.tar.bz2 //看清自己的版本

解壓後會生成一個源代碼目錄/usr/src/linux-source-2.6.27
6,進入源碼目錄後,配置文件
make oldconfig
7,生成內核
make
8,瘋狂等待,大約1個多小時

9,編譯模塊
make moles
10,安裝模塊
make moles_install

大功告成!^_^
下面說一下Makefile文件

$(MAKE) -C $(KERNELDIR) M=$(PWD) moles_install #PWD當前工作目錄的變數
obj-m := hello.o
#hello.o是你要生成的驅動,以後可以自己改
KERNELDIR:=/lib/moles/2.6.27-7-generic/build
#這里別抄,寫成你自己的版本,這個目錄執行了內核源碼目錄
PWD:=$(shell pwd) #將當前工作目錄賦值該PWD
moles:
$(MAKE) -C $(KERNELDIR) M=$(PWD) moles
moles_install:

下面是一個經典的Hello,world!例子自己make一下就行了。
#include <linux/init.h>
#include <linux/mole.h>
MODULE_LICENSE("Dual BSD/GPL");
static int hello_init(void)
{
printk(KERN_ALERT "Hello, world!\n");
return 0;
}
static void hello_exit(void)
{
printk(KERN_ALERT"Goodbye, cruel world!\n");
}
mole_init(hello_init);
mole_exit(hello_exit);

本文來自CSDN博客,轉載請標明出處:http://blog.csdn.net/unikingest/archive/2009/03/10/3977747.aspx

-----------------------------------------------------------------------------

修改的這篇文章,自己加了幾個注意點
http://blog.theosoft.net/article.asp?id=57

第一次的Linux kernel上機內容是編譯一個內核。我用的是Ubuntu,有很多地方和其它 Linux不一樣,所以就來把我的過程寫下來,以後也好有個參照
首先當然是下載內核源代碼,如果你要最新的內核,可以去ftp.kernel.org。當然,國內速度可能會很慢。如果你是教育網用戶,可以去上海交大的鏡像站下載,地址是http://ftp.sjtu.e.cn/sites/ftp.kernel.org/,缺點就是沒有最新的內核(更新需要一定的時間)。
==================================================備注
如果是就是編譯ubuntu本省自帶的內核,只需要
新立得搜索linux souce,下載帶ubuntupatch的kernel的source code。
sudo apt-get source linux-source-2.6.27
==================================================備注
我下載的是linux-2.6.19.2.tar.gz可以下到的最新版本了。下完之後當然是解壓縮。不過還不能直接編譯,因為Ubuntu的默認安裝里缺少必要的組建。打開終端,輸入一下命令:
sudo -i
apt-get install build-essential kernel-package libncurses5-dev
然後到新立得里把所有以ncurses開頭的軟體包全部裝上,這樣就可以開始編譯內核了。
先運行以下命令,復制當前內核的配置文件。
cp /boot/config-`uname -r` ./.config
然後
make menuconfig

選擇 "Load an Alternate Configuration File",再選擇你剛才拷貝過來的.config文件作為配置文件。然後確定。當結束後,你選擇退出時,會提示問你 "Do you wish to save your new kernel configuration?"選擇yes即可。
接下來就要編譯了。輸入命令:
make
你也可以將編譯任務分成2個線程來執行,只要輸入:
make -j2
編譯一般需要1~1.5小時左右,就看cpu的性能如何
編譯完成後,開始安裝:
make mole_install
make install
然後添加引導信息,不過之前還是要裝一個組件initramfs-tools,裝完以後輸入:
mkinitramfs -o /boot/initrd.img-2.X.XX /lib/moles/2.X.XX
==================================================備注
後面的參數不要忘記了,否則啟動新內核會出現錯誤:
WARNING: Couldn』t open directory /lib/moles/2.6.15.7-ubuntu1: No such file or directory
FATAL: Could not open /lib/moles/2.6.15.7-ubuntu1/moles.dep.temp for writing: No such file or directory
==================================================備注
最後打開 /boot/grub/menu.lst
在 ## ## End Default Options ## 下面添加類似下面的兩段
title Ubuntu, kernel 2.6.19.2
root (hd0,4)
kernel /vmlinuz-2.6.19.2 root=/dev/hdd6
initrd /initrd.img-2.6.19.2
savedefault
boot

title Ubuntu, kernel 2.6.19.2 (recovery mode)
root (hd0,4)
kernel /vmlinuz-2.6.19.2 root=/dev/hdd6 ro single
initrd /initrd.img-2.6.19.2
boot
注意 root和kernel欄位要模仿menu.lst下面已有的內容寫。下面是 (hd0,4),那麼你也寫(hd0,4),下面寫root=/dev/hdd6,你也寫root=/dev/hdd6,只是內核的版本號改為現在編譯的版本號。然後重新啟動計算機,在GRUB中選擇新內核啟動。如果啟動失敗,你可以重啟選擇老內核。

⑶ 如何加快linux android 的編譯速度

項目越來越大,每次需要重新編譯整個項目都是一件很浪費時間的事情。Research了一下,找到以下可以幫助提高速度的方法,總結一下。
1. 使用tmpfs來代替部分IO讀寫
2.ccache,可以將ccache的緩存文件設置在tmpfs上,但是這樣的話,每次開機後,ccache的緩存文件會丟失
3.distcc,多機器編譯
4.將屏幕輸出列印到內存文件或者/dev/null中,避免終端設備(慢速設備)拖慢速度。

tmpfs
有人說在Windows下用了RAMDisk把一個項目編譯時間從4.5小時減少到了5分鍾,也許這個數字是有點誇張了,不過粗想想,把文件放到內存上做編譯應該是比在磁碟上快多了吧,尤其如果編譯器需要生成很多臨時文件的話。
這個做法的實現成本最低,在Linux中,直接mount一個tmpfs就可以了。而且對所編譯的工程沒有任何要求,也不用改動編譯環境。
mount -t tmpfs tmpfs ~/build -o size=1G
用2.6.32.2的Linux Kernel來測試一下編譯速度:
用物理磁碟:40分16秒
用tmpfs:39分56秒
呃……沒什麼變化。看來編譯慢很大程度上瓶頸並不在IO上面。但對於一個實際項目來說,編譯過程中可能還會有打包等IO密集的操作,所以只要可能,用tmpfs是有益無害的。當然對於大項目來說,你需要有足夠的內存才能負擔得起這個tmpfs的開銷。
make -j
既然IO不是瓶頸,那CPU就應該是一個影響編譯速度的重要因素了。
用make -j帶一個參數,可以把項目在進行並行編譯,比如在一台雙核的機器上,完全可以用make -j4,讓make最多允許4個編譯命令同時執行,這樣可以更有效的利用CPU資源。
還是用Kernel來測試:
用make: 40分16秒
用make -j4:23分16秒
用make -j8:22分59秒
由此看來,在多核CPU上,適當的進行並行編譯還是可以明顯提高編譯速度的。但並行的任務不宜太多,一般是以CPU的核心數目的兩倍為宜。
不過這個方案不是完全沒有cost的,如果項目的Makefile不規范,沒有正確的設置好依賴關系,並行編譯的結果就是編譯不能正常進行。如果依賴關系設置過於保守,則可能本身編譯的可並行度就下降了,也不能取得最佳的效果。
ccache
ccache工作原理:
ccache也是一個編譯器驅動器。第一趟編譯時ccache緩存了GCC的「-E」輸出、編譯選項以及.o文件到$HOME/.ccache。第二次編譯時盡量利用緩存,必要時更新緩存。所以即使"make clean; make"也能從中獲得好處。ccache是經過仔細編寫的,確保了與直接使用GCC獲得完全相同的輸出。

ccache用於把編譯的中間結果進行緩存,以便在再次編譯的時候可以節省時間。這對於玩Kernel來說實在是再好不過了,因為經常需要修改一些Kernel的代碼,然後再重新編譯,而這兩次編譯大部分東西可能都沒有發生變化。對於平時開發項目來說,也是一樣。為什麼不是直接用make所支持的增量編譯呢?還是因為現實中,因為Makefile的不規范,很可能這種「聰明」的方案根本不能正常工作,只有每次make clean再make才行。
安裝完ccache後,可以在/usr/local/bin下建立gcc,g++,c++,cc的symbolic link,鏈到/usr/bin/ccache上。總之確認系統在調用gcc等命令時會調用到ccache就可以了(通常情況下/usr/local /bin會在PATH中排在/usr/bin前面)。
安裝的另外一種方法:
vi ~/.bash_profile
把/usr/lib/ccache/bin路徑加到PATH下
PATH=/usr/lib/ccache/bin:$PATH:$HOME/bin
這樣每次啟動g++的時候都會啟動/usr/lib/ccache/bin/g++,而不會啟動/usr/bin/g++
效果跟使用命令行ccache g++效果一樣
這樣每次用戶登錄時,使用g++編譯器時會自動啟動ccache
繼續測試:
用ccache的第一次編譯(make -j4):23分38秒
用ccache的第二次編譯(make -j4):8分48秒
用ccache的第三次編譯(修改若干配置,make -j4):23分48秒

看來修改配置(我改了CPU類型...)對ccache的影響是很大的,因為基本頭文件發生變化後,就導致所有緩存數據都無效了,必須重頭來做。但如果只是修改一些.c文件的代碼,ccache的效果還是相當明顯的。而且使用ccache對項目沒有特別的依賴,布署成本很低,這在日常工作中很實用。
可以用ccache -s來查看cache的使用和命中情況:
cache directory /home/lifanxi/.ccachecache hit 7165cache miss 14283called for link 71not a C/C++ file 120no input file 3045files in cache 28566cache size 81.7 Mbytesmax cache size 976.6 Mbytes
可以看到,顯然只有第二編次譯時cache命中了,cache miss是第一次和第三次編譯帶來的。兩次cache佔用了81.7M的磁碟,還是完全可以接受的。
distcc
一台機器的能力有限,可以聯合多台電腦一起來編譯。這在公司的日常開發中也是可行的,因為可能每個開發人員都有自己的開發編譯環境,它們的編譯器版本一般是一致的,公司的網路也通常具有較好的性能。這時就是distcc大顯身手的時候了。
使用distcc,並不像想像中那樣要求每台電腦都具有完全一致的環境,它只要求源代碼可以用make -j並行編譯,並且參與分布式編譯的電腦系統中具有相同的編譯器。因為它的原理只是把預處理好的源文件分發到多台計算機上,預處理、編譯後的目標文件的鏈接和其它除編譯以外的工作仍然是在發起編譯的主控電腦上完成,所以只要求發起編譯的那台機器具備一套完整的編譯環境就可以了。
distcc安裝後,可以啟動一下它的服務:
/usr/bin/distccd --daemon --allow 10.64.0.0/16
默認的3632埠允許來自同一個網路的distcc連接。
然後設置一下DISTCC_HOSTS環境變數,設置可以參與編譯的機器列表。通常localhost也參與編譯,但如果可以參與編譯的機器很多,則可以把localhost從這個列表中去掉,這樣本機就完全只是進行預處理、分發和鏈接了,編譯都在別的機器上完成。因為機器很多時,localhost的處理負擔很重,所以它就不再「兼職」編譯了。
export DISTCC_HOSTS="localhost 10.64.25.1 10.64.25.2 10.64.25.3"
然後與ccache類似把g++,gcc等常用的命令鏈接到/usr/bin/distcc上就可以了。
在make的時候,也必須用-j參數,一般是參數可以用所有參用編譯的計算機CPU內核總數的兩倍做為並行的任務數。
同樣測試一下:
一台雙核計算機,make -j4:23分16秒
兩台雙核計算機,make -j4:16分40秒
兩台雙核計算機,make -j8:15分49秒
跟最開始用一台雙核時的23分鍾相比,還是快了不少的。如果有更多的計算機加入,也可以得到更好的效果。
在編譯過程中可以用distccmon-text來查看編譯任務的分配情況。distcc也可以與ccache同時使用,通過設置一個環境變數就可以做到,非常方便。
總結一下:
tmpfs: 解決IO瓶頸,充分利用本機內存資源
make -j: 充分利用本機計算資源
distcc: 利用多台計算機資源
ccache: 減少重復編譯相同代碼的時間
這些工具的好處都在於布署的成本相對較低,綜合利用這些工具,就可以輕輕鬆鬆的節省相當可觀的時間。上面介紹的都是這些工具最基本的用法,更多的用法可以參考它們各自的man page。
5.還有提速方法是把屏幕輸出重定向到內存文件或/dev/null,因對終端設備(慢速設備)的阻塞寫操作也會拖慢速度。推薦內存文件,這樣發生錯誤時,能夠查看。

⑷ 大家編譯一個x86的Linux內核需要多長時間

make 時加參數 -jX
X 是你的 CPU 核心數量 +1 。
可以加快你的編譯速度。

我的本本 T5450 編譯需要 10 分鍾。我的內核是針對機器剪裁了的。不剪裁的全功能內核貌似我就需要 30 分鍾了。

⑸ 哪裡可以下載Linux系統的的源代碼編譯要多久編譯安裝的比直接安裝的性能高多少

源代碼從 https://www.kernel.org 取。

編譯的時間因人而異,也因系統不同而異,除了特別熟悉的,大多數人都要用幾個小時。一個是配置的時候要閱讀很多幫助信息,這要花很多時間,另一個就是編譯本身也需要很長的時間。

編譯的性能取決於你的配置。你對自己的機器的硬體了解得准確,配置的時候把不需要的選項都去掉;你對自己的軟體目標比較明確,該要的選項都選擇進來,這樣得到的內核性能自然會好。要是上述兩條做不到,其結果可能還不如直接安裝的內核好。

⑹ 在編譯linux 內核的時候,需要用到root 許可權嗎

編譯不需要安裝需要。
不過我一般建議編譯內核最好用 root 。因為有些人習慣上編譯內核在 /usr/src 裡面放源代碼編譯,這個目錄是系統目錄,是需要 root 所有,而且寫入需要 root 許可權的。

一般軟體放在個人目錄裡面編譯就不是非用 root 了。但有些軟體會有某些設計問題,安裝時會忘了設置 root 相關許可權而延續文件編譯後的由編譯用的哪個用戶的許可權,這可能會導致軟體運行出現異常。

⑺ linux源碼編譯node需要多長時間

方法/步驟

首先到網下載最新的安裝文件node-v0.10.32-linux-x64.tar.gz。

用secureCRT將源碼包上傳到linux的/opt/soft,在命令行輸入:tar -xvf node-v0.10.32-linux-x64.tar.gz進行解壓。

編輯文件 vi /etc/profile
文件末添加如下
export NODE_HOME=/opt/soft/node-v0.10.32-linux-x64
export PATH=$PATH:$NODE_HOME/binexport NODE_PATH=$NODE_HOME/lib/node_moles

在命令行輸入:source /etc/profile,讓配置文件生效。

在命令行輸入:node -v,查看node.js的版本。如果出現版本號則證明安裝成功。如下圖所示。

閱讀全文

與編譯linux需要多長時間相關的資料

熱點內容
開發者聯名貢獻源碼 瀏覽:336
sae部署java 瀏覽:18
校園330app怎麼下載 瀏覽:23
javahashcode演算法 瀏覽:714
pdf轉doc手機軟體 瀏覽:531
方舟手游開伺服器機床怎麼選 瀏覽:255
qt編程入門pdf下載 瀏覽:784
java編程的三個步驟 瀏覽:776
s點b點主圖源碼 瀏覽:436
電腦可以刪除的臨時文件夾 瀏覽:9
小杜app上怎麼啟用 瀏覽:305
為什麼伺服器喇叭喊了一次就不行 瀏覽:480
phpdbo驅動 瀏覽:255
程序員尋找轉行建議 瀏覽:632
psgrepjava 瀏覽:415
夢幻誅仙12職業變態源碼 瀏覽:370
汽車的控制是怎麼編程的 瀏覽:686
穩定的ip地址伺服器 瀏覽:641
python多線程編程教程 瀏覽:252
筆記本編程電腦排行榜 瀏覽:32