Ⅰ 常見的排序演算法—選擇,冒泡,插入,快速,歸並
太久沒看代碼了,最近打算復習一下java,又突然想到了排序演算法,就把幾種常見的排序演算法用java敲了一遍,這里統一將無序的序列從小到大排列。
選擇排序是一種簡單直觀的排序演算法。它的工作原理是:第一次從待排序的數據元素中選出最小的一個元素,存放在序列的起始位置,然後再從剩餘的未排序元素中尋找到最小元素,繼續放在下一個位置,直到待排序元素個數為0。
選擇排序代碼如下:
public void Select_sort(int[] arr) {
int temp,index;
for( int i=0;i<10;i++) {
index = i;
for(int j = i + 1 ; j < 10 ; j++) {
if(arr[j] < arr[index])
index = j;
}
/*
temp = arr[i];
arr[i] = arr[index];
arr[index] = temp;
*/
swap(arr,i,index);
}
System.out.print("經過選擇排序後:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr[i] +" ");
System.out.println("");
}
冒泡排序是一種比較基礎的排序演算法,其思想是相鄰的元素兩兩比較,較大的元素放後面,較小的元素放前面,這樣一次循環下來,最大元素就會歸位,若數組中元素個數為n,則經過(n-1)次後,所有元素就依次從小到大排好序了。整個過程如同氣泡冒起,因此被稱作冒泡排序。
選擇排序代碼如下:
public void Bubble_sort(int[] arr) {
int temp;
for(int i = 0 ; i < 9 ; i++) {
for(int j = 0 ; j < 10 - i - 1 ;j++) {
if(arr[j] > arr[j+1]) {
/*
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
*/
swap(arr,j,j+1);
}
}
}
System.out.print("經過冒泡排序後:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr[i] +" ");
System.out.println("");
}
插入排序也是一種常見的排序演算法,插入排序的思想是:創建一個與待排序數組等大的數組,每次取出一個待排序數組中的元素,然後將其插入到新數組中合適的位置,使新數組中的元素保持從小到大的順序。
插入排序代碼如下:
public void Insert_sort(int[] arr) {
int length = arr.length;
int[] arr_sort = new int[length];
int count = 0;
for(int i = 0;i < length; i++) {
if(count == 0) {
arr_sort[0] = arr[0];
}else if(arr[i] >= arr_sort[count - 1]) {
arr_sort[count] = arr[i];
}else if(arr[i] < arr_sort[0]) {
insert(arr,arr_sort,arr[i],0,count);
}else {
for(int j = 0;j < count - 1; j++) {
if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {
insert(arr,arr_sort,arr[i],j+1,count);
break;
}
}
}
count++;
}
System.out.print("經過插入排序後:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr_sort[i] +" ");
System.out.println("");
}
public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {
for(int i = count; i > index; i--)
arr_sort[i] = arr_sort[i-1];
arr_sort[index] = value;
}
快速排序的效率比冒泡排序演算法有大幅提升。因為使用冒泡排序時,一次外循環只能歸位一個值,有n個元素最多就要執行(n-1)次外循環。而使用快速排序時,一次可以將所有元素按大小分成兩堆,也就是平均情況下需要logn輪就可以完成排序。
快速排序的思想是:每趟排序時選出一個基準值(這里以首元素為基準值),然後將所有元素與該基準值比較,並按大小分成左右兩堆,然後遞歸執行該過程,直到所有元素都完成排序。
public void Quick_sort(int[] arr, int left, int right) {
if(left >= right)
return ;
int temp,t;
int j = right;
int i = left;
temp = arr[left];
while(i < j) {
while(arr[j] >= temp && i < j)
j--;
while(arr[i] <= temp && i < j)
i++;
if(i < j) {
t = arr[i];
arr[i] = arr[j];
arr[j] = t;
}
}
arr[left] = arr[i];
arr[i] = temp;
Quick_sort(arr,left, i - 1);
Quick_sort(arr, i + 1, right);
}
歸並排序是建立在歸並操作上的一種有效的排序演算法,歸並排序對序列的元素進行逐層折半分組,然後從最小分組開始比較排序,每兩個小分組合並成一個大的分組,逐層進行,最終所有的元素都是有序的。
public void Mergesort(int[] arr,int left,int right) {
if(right - left > 0) {
int[] arr_1 = new int[(right - left)/2 + 1];
int[] arr_2 = new int[(right - left + 1)/2];
int j = 0;
int k = 0;
for(int i = left;i <= right;i++) {
if(i <= (right + left)/2) {
arr_1[j++] = arr[i];
}else {
arr_2[k++] = arr[i];
}
}
Mergesort(arr_1,0,(right - left)/2);
Mergesort(arr_2,0,(right - left - 1)/2);
Merge(arr_1,arr_2,arr);
}
}
public void Merge(int[] arr_1,int[] arr_2,int[] arr) {
int i = 0;
int j = 0;
int k = 0;
int L1 = arr_1.length;
int L2 = arr_2.length;
while(i < L1 && j < L2) {
if(arr_1[i] <= arr_2[j]) {
arr[k] = arr_1[i];
i++;
}else {
arr[k] = arr_2[j];
j++;
}
k++;
}
if(i == L1) {
for(int t = j;j < L2;j++)
arr[k++] = arr_2[j];
}else {
for(int t = i;i < L1;i++)
arr[k++] = arr_1[i];
}
}
歸並排序這里我使用了left,right等變數,使其可以通用,並沒有直接用數字表示那麼明確,所以給出相關偽代碼,便於理解。
Mergesort(arr[0...n-1])
//輸入:一個可排序數組arr[0...n-1]
//輸出:非降序排列的數組arr[0...n-1]
if n>1
arr[0...n/2-1] to arr_1[0...(n+1)/2-1]//確保arr_1中元素個數>=arr_2中元素個數
//對於總個數為奇數時,arr_1比arr_2中元素多一個;對於總個數為偶數時,沒有影響
arr[n/2...n-1] to arr_2[0...n/2-1]
Mergesort(arr_1[0...(n+1)/2-1])
Mergesort(arr_2[0...n/2-1])
Merge(arr_1,arr_2,arr)
Merge(arr_1[0...p-1],arr_2[0...q-1],arr[0...p+q-1])
//輸入:兩個有序數組arr_1[0...p-1]和arr_2[0...q-1]
//輸出:將arr_1與arr_2兩數組合並到arr
int i<-0;j<-0;k<-0
while i
<p span="" do<="" jif arr_1[i] <= arr_2[j]
arr[k] <- arr_1[i]
i<-i+1
else arr[k] <- arr_2[j];j<-j+1
k<-k+1
if i=p
arr_2[j...q-1] to arr[k...p+q-1]
else arr_1[i...p-1] to arr[k...p+q-1]
package test_1;
import java.util.Scanner;
public class Test01 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int[] arr_1 = new int[10];
for(int i = 0 ; i < 10 ; i++)
arr_1[i] = sc.nextInt();
Sort demo_1 = new Sort();
//1~5一次只能運行一個,若多個同時運行,則只有第一個有效,後面幾個是無效排序。因為第一個運行的已經將帶排序數組排好序。
demo_1.Select_sort(arr_1);//-----------------------1
//demo_1.Bubble_sort(arr_1);//---------------------2
/* //---------------------3
demo_1.Quick_sort(arr_1, 0 , arr_1.length - 1);
System.out.print("經過快速排序後:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr_1[i] +" ");
System.out.println("");
*/
//demo_1.Insert_sort(arr_1);//--------------------4
/* //--------------------5
demo_1.Mergesort(arr_1,0,arr_1.length - 1);
System.out.print("經過歸並排序後:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr_1[i] +" ");
System.out.println("");
*/
}
}
class Sort {
public void swap(int arr[],int a, int b) {
int t;
t = arr[a];
arr[a] = arr[b];
arr[b] = t;
}
public void Select_sort(int[] arr) {
int temp,index;
for( int i=0;i<10;i++) {
index = i;
for(int j = i + 1 ; j < 10 ; j++) {
if(arr[j] < arr[index])
index = j;
}
/*
temp = arr[i];
arr[i] = arr[index];
arr[index] = temp;
*/
swap(arr,i,index);
}
System.out.print("經過選擇排序後:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr[i] +" ");
System.out.println("");
}
public void Bubble_sort(int[] arr) {
int temp;
for(int i = 0 ; i < 9 ; i++) {
for(int j = 0 ; j < 10 - i - 1 ;j++) {
if(arr[j] > arr[j+1]) {
/*
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
*/
swap(arr,j,j+1);
}
}
}
System.out.print("經過冒泡排序後:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr[i] +" ");
System.out.println("");
}
public void Quick_sort(int[] arr, int left, int right) {
if(left >= right)
return ;
int temp,t;
int j = right;
int i = left;
temp = arr[left];
while(i < j) {
while(arr[j] >= temp && i < j)
j--;
while(arr[i] <= temp && i < j)
i++;
if(i < j) {
t = arr[i];
arr[i] = arr[j];
arr[j] = t;
}
}
arr[left] = arr[i];
arr[i] = temp;
Quick_sort(arr,left, i - 1);
Quick_sort(arr, i + 1, right);
}
public void Insert_sort(int[] arr) {
int length = arr.length;
int[] arr_sort = new int[length];
int count = 0;
for(int i = 0;i < length; i++) {
if(count == 0) {
arr_sort[0] = arr[0];
}else if(arr[i] >= arr_sort[count - 1]) {
arr_sort[count] = arr[i];
}else if(arr[i] < arr_sort[0]) {
insert(arr,arr_sort,arr[i],0,count);
}else {
for(int j = 0;j < count - 1; j++) {
if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {
insert(arr,arr_sort,arr[i],j+1,count);
break;
}
}
}
count++;
}
System.out.print("經過插入排序後:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr_sort[i] +" ");
System.out.println("");
}
public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {
for(int i = count; i > index; i--)
arr_sort[i] = arr_sort[i-1];
arr_sort[index] = value;
}
public void Mergesort(int[] arr,int left,int right) {
if(right - left > 0) {
int[] arr_1 = new int[(right - left)/2 + 1];
int[] arr_2 = new int[(right - left + 1)/2];
int j = 0;
int k = 0;
for(int i = left;i <= right;i++) {
if(i <= (right + left)/2) {
arr_1[j++] = arr[i];
}else {
arr_2[k++] = arr[i];
}
}
Mergesort(arr_1,0,(right - left)/2);
Mergesort(arr_2,0,(right - left - 1)/2);
Merge(arr_1,arr_2,arr);
}
}
public void Merge(int[] arr_1,int[] arr_2,int[] arr) {
int i = 0;
int j = 0;
int k = 0;
int L1 = arr_1.length;
int L2 = arr_2.length;
while(i < L1 && j < L2) {
if(arr_1[i] <= arr_2[j]) {
arr[k] = arr_1[i];
i++;
}else {
arr[k] = arr_2[j];
j++;
}
k++;
}
if(i == L1) {
for(int t = j;j < L2;j++)
arr[k++] = arr_2[j];
}else {
for(int t = i;i < L1;i++)
arr[k++] = arr_1[i];
}
}
}
若有錯誤,麻煩指正,不勝感激。
Ⅱ Java的排序演算法有哪些
排序: 插入,冒泡,選擇,Shell,快速排序
Ⅲ java中冒泡排序演算法的詳細解答以及程序
實例說明
用冒泡排序方法對數組進行排序。
實例解析
交換排序的基本思想是兩兩比較待排序記錄的關鍵字,發現兩個記錄的次序相反時即進行交換,直到沒有反序的記錄為止。
應用交換排序基本思想的主要排序方法有冒泡排序和快速排序。
冒泡排序
將被排序的記錄數組 R[1..n] 垂直排列,每個記錄 R[i] 看做是重量為 R[i].key 的氣泡。根據輕氣泡不能在重氣泡之下的原則,從下往上掃描數組 R 。凡掃描到違反本原則的輕氣泡,就使其向上「漂浮」。如此反復進行,直到最後任何兩個氣泡都是輕者在上,重者在下為止。
(1) 初始, R[1..n] 為無序區。
(2) 第一趟掃描,從無序區底部向上依次比較相鄰的兩個氣泡的重量,若發現輕者在下、重者在上,則交換二者的位置。即依次比較 (R[n],R[n-1]) 、 (R[n-1],R[n-2]) 、 … 、 (R[2],R[1]); 對於每對氣泡 (R[j+1],R[j]), 若 R[j+1].key<R[j].key, 則交換 R[j+1] 和 R[j] 的內容。
第一趟掃描完畢時,「最輕」的氣泡就飄浮到該區間的頂部,即關鍵字最小的記錄被放在最高位置 R[1] 上。
(3) 第二趟掃描,掃描 R[2..n]。掃描完畢時,「次輕」的氣泡飄浮到 R[2] 的位置上 …… 最後,經過 n-1 趟掃描可得到有序區 R[1..n]。
注意:第 i 趟掃描時, R[1..i-1] 和 R[i..n] 分別為當前的有序區和無序區。掃描仍是從無序區底部向上直至該區頂部。掃描完畢時,該區中最輕氣泡漂浮到頂部位置 R[i] 上,結果是 R[1..i] 變為新的有序區。
冒泡排序演算法
因為每一趟排序都使有序區增加了一個氣泡,在經過 n-1 趟排序之後,有序區中就有 n-1 個氣泡,而無序區中氣泡的重量總是大於等於有序區中氣泡的重量,所以整個冒泡排序過程至多需要進行 n-1 趟排序。
若在某一趟排序中未發現氣泡位置的交換,則說明待排序的無序區中所有氣泡均滿足輕者在上,重者在下的原則,因此,冒泡排序過程可在此趟排序後終止。為此,在下面給出的演算法中,引入一個布爾量 exchange, 在每趟排序開始前,先將其置為 FALSE 。若排序過程中發生了交換,則將其置為 TRUE 。各趟排序結束時檢查 exchange, 若未曾發生過交換則終止演算法,不再進行下趟排序。
具體演算法如下:
void BubbleSort(SeqList R){
//R(1..n) 是待排序的文件,採用自下向上掃描,對 R 做冒泡排序
int i,j;
Boolean exchange; // 交換標志
for(i=1;i<n;i++){ // 最多做 n-1 趟排序
exchange=FALSE; // 本趟排序開始前,交換標志應為假
for(j=n-1;j>=i;j--) // 對當前無序區 R[i..n] 自下向上掃描
if(R[j+1].key<R[j].key){ // 交換記錄
R[0]=R[j+1]; //R[0] 不是哨兵,僅做暫存單元
R[j+1]=R[j];
R[j]=R[0];
exchange=TRUE; // 發生了交換,故將交換標志置為真
}
if(!exchange) // 本趟排序未發生交換,提前終止演算法
return;
} //endfor( 外循環 )
}//BubbleSort
publicclassBubbleSort{
publicstaticvoidmain(String[]args){
//TODOAuto-generatedmethodstub
List<Integer>lstInteger=newArrayList<Integer>();
lstInteger.add(1);
lstInteger.add(1);
lstInteger.add(3);
lstInteger.add(2);
lstInteger.add(1);
for(inti=0;i<lstInteger.size();i++){
System.out.println(lstInteger.get(i));
}
System.out.println("排序之後-----------------");
lstInteger=sortList(lstInteger);
for(inti=0;i<lstInteger.size();i++){
System.out.println(lstInteger.get(i));
}
}
publicstaticList<Integer>sortList(List<Integer>lstInteger){
inti,j,m;
booleanblChange;
intn=lstInteger.size();
for(i=0;i<n;i++){
blChange=false;
for(j=n-1;j>i;j--){
if(lstInteger.get(j)<lstInteger.get(j-1)){
m=lstInteger.get(j-1);
lstInteger.set(j-1,lstInteger.get(j));
lstInteger.set(j,m);
blChange=true;
}
}
if(!blChange){
returnlstInteger;
}
}
returnlstInteger;
}
}
歸納注釋
演算法的最好時間復雜度:若文件的初始狀態是正序的,一趟掃描即可完成排序。所需的關鍵字比較次數C和記錄移動次數M均達到最小值,即C(min)=n-1,M(min)=0。冒泡排序最好的時間復雜度為O(n)。
演算法的最壞時間復雜度:若初始文件是反序的,需要進行n-1趟排序。每趟排序要進行n-1次關鍵字的比較(1<=i<=n-1),且每次比較都必須移動記錄3次。在這種情況下,比較和移動次數均達到最大值,即C(max)=n(n-1)/2=O(n^2),M(max)=3n(n-1)/2=O(n^2)。冒泡排序的最壞時間復雜度為O(n^2)。
演算法的平均時間復雜度為O(n^2)。雖然冒泡排序不一定要進行n-1趟,但由於它的記錄移動次數較多,故平均時間性能比直接插入排序要差得多。
演算法穩定性:冒泡排序是就地排序,且它是穩定的。
演算法改進:上述的冒泡排序還可做如下的改進,①記住最後一次交換發生位置lastExchange的冒泡排序(該位置之前的相鄰記錄均已有序)。下一趟排序開始時,R[1..lastExchange-1]是有序區,R[lastExchange..n]是無序區。這樣,一趟排序可能使當前有序區擴充多個記錄,從而減少排序的趟數。②改變掃描方向的冒泡排序。冒泡排序具有不對稱性。能一趟掃描完成排序的情況,只有最輕的氣泡位於R[n]的位置,其餘的氣泡均已排好序,那麼也只需一趟掃描就可以完成排序。如對初始關鍵字序列12、18、42、44、45、67、94、10就僅需一趟掃描。需要n-1趟掃描完成排序情況,當只有最重的氣泡位於R[1]的位置,其餘的氣泡均已排好序時,則仍需做n-1趟掃描才能完成排序。比如對初始關鍵字序列:94、10、12、18、42、44、45、67就需7趟掃描。造成不對稱性的原因是每趟掃描僅能使最重氣泡「下沉」一個位置,因此使位於頂端的最重氣泡下沉到底部時,需做n-1趟掃描。在排序過程中交替改變掃描方向,可改進不對稱性
Ⅳ java排列組合的演算法 譬如我有(A,B,C,D),我想輸出的結果是
我覺得可以看成數字的排列如 1 2 3 4分別代表A B C D
就是將1 2 3 4排列
四位的就是1234
三位的就是從這四個數字中取出三個數字,得到的三位數是最小的,如:
取 1 2 3 可以得到123 213 321 132等等 其中123是最小的
兩為數字的跟三位數字的一樣
Ⅳ java實現幾種常見排序演算法
下面給你介紹四種常用排序演算法:
1、冒泡排序
特點:效率低,實現簡單
思想(從小到大排):每一趟將待排序序列中最大元素移到最後,剩下的為新的待排序序列,重復上述步驟直到排完所有元素。這只是冒泡排序的一種,當然也可以從後往前排。
Ⅵ 哪位幫我講講java中的快速排序法
快速排序是對冒泡排序的一種改進。它的基本思想是:通過一躺排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按次方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。最壞情況的時間復雜度為O(n2),最好情況時間復雜度為O(nlog2n)。
另外 java沒指針概念 可以認為是句柄
假設要排序的數組是A[1]……A[N],首先任意選取一個數據(通常選用第一個數據)作為關鍵數據,然後將所有比它的數都放到它前面,所有比它大的數都放到它後面,這個過程稱為一躺快速排序。一趟快速排序的演算法是:
1)、設置兩個變數I、J,排序開始的時候I:=1,J:=N;
2)以第一個數組元素作為關鍵數據,賦值給X,即X:=A[1];
3)、從J開始向前搜索,即由後開始向前搜索(J:=J-1),找到第一個小於X的值,兩者交換;
4)、從I開始向後搜索,即由前開始向後搜索(I:=I+1),找到第一個大於X的值,兩者交換;
5)、重復第3、4步,直到I=J;
例如:待排序的數組A的值分別是:(初始關鍵數據X:=49)
A[1] A[2] A[3] A[4] A[5] A[6] A[7]:
49 38 65 97 76 13 27
進行第一次交換後: 27 38 65 97 76 13 49
( 按照演算法的第三步從後面開始找)
進行第二次交換後: 27 38 49 97 76 13 65
( 按照演算法的第四步從前面開始找>X的值,65>49,兩者交換,此時I:=3 )
進行第三次交換後: 27 38 13 97 76 49 65
( 按照演算法的第五步將又一次執行演算法的第三步從後開始找)
進行第四次交換後: 27 38 13 49 76 97 65
( 按照演算法的第四步從前面開始找大於X的值,97>49,兩者交換,此時J:=4 )
此時再執行第三步的時候就發現I=J,從而結束一躺快速排序,那麼經過一躺快速排序之後的結果是:27 38 13 49 76 97 65,即所以大於49的數全部在49的後面,所以小於49的數全部在49的前面。
快速排序就是遞歸調用此過程——在以49為中點分割這個數據序列,分別對前面一部分和後面一部分進行類似的快速排序,從而完成全部數據序列的快速排序,最後把此數據序列變成一個有序的序列,根據這種思想對於上述數組A的快速排序的全過程如圖6所示:
初始狀態 {49 38 65 97 76 13 27}
進行一次快速排序之後劃分為 {27 38 13} 49 {76 97 65}
分別對前後兩部分進行快速排序 {13} 27 {38}
結束 結束 {49 65} 76 {97}
49 {65} 結束
結束
Ⅶ 數據結構 java開發中常用的排序演算法有哪些
排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。
主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序
一、冒泡(Bubble)排序
----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。
二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。
三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。
四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。
五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。
七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。
堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。
Ⅷ Java通過幾種經典的演算法來實現數組排序
JAVA中在運用數組進行排序功能時,一般有四種方法:快速排序法、冒泡法、選擇排序法、插入排序法。
快速排序法主要是運用了Arrays中的一個方法Arrays.sort()實現。
冒泡法是運用遍歷數組進行比較,通過不斷的比較將最小值或者最大值一個一個的遍歷出來。
選擇排序法是將數組的第一個數據作為最大或者最小的值,然後通過比較循環,輸出有序的數組。
插入排序是選擇一個數組中的數據,通過不斷的插入比較最後進行排序。下面我就將他們的實現方法一一詳解供大家參考。
<1>利用Arrays帶有的排序方法快速排序
public class Test2{ public static void main(String[] args){ int[] a={5,4,2,4,9,1}; Arrays.sort(a); //進行排序 for(int i: a){ System.out.print(i); } } }
<2>冒泡排序演算法
public static int[] bubbleSort(int[] args){//冒泡排序演算法 for(int i=0;i<args.length-1;i++){ for(int j=i+1;j<args.length;j++){ if (args[i]>args[j]){ int temp=args[i]; args[i]=args[j]; args[j]=temp; } } } return args; }
<3>選擇排序演算法
public static int[] selectSort(int[] args){//選擇排序演算法 for (int i=0;i<args.length-1 ;i++ ){ int min=i; for (int j=i+1;j<args.length ;j++ ){ if (args[min]>args[j]){ min=j; } } if (min!=i){ int temp=args[i]; args[i]=args[min]; args[min]=temp; } } return args; }
<4>插入排序演算法
public static int[] insertSort(int[] args){//插入排序演算法 for(int i=1;i<args.length;i++){ for(int j=i;j>0;j--){ if (args[j]<args[j-1]){ int temp=args[j-1]; args[j-1]=args[j]; args[j]=temp; }else break; } } return args; }
Ⅸ java怎麼實現排序
Java實現幾種常見排序方法
日常操作中常見的排序方法有:冒泡排序、快速排序、選擇排序、插入排序、希爾排序,甚至還有基數排序、雞尾酒排序、桶排序、鴿巢排序、歸並排序等。
以下常見演算法的定義
1. 插入排序:插入排序基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。插入排序的基本思想是:每步將一個待排序的紀錄,按其關鍵碼值的大小插入前面已經排序的文件中適當位置上,直到全部插入完為止。
2. 選擇排序:選擇排序(Selection sort)是一種簡單直觀的排序演算法。它的工作原理是每一次從待排序的數據元素中選出最小(或最大)的一個元素,存放在序列的起始位置,直到全部待排序的數據元素排完。 選擇排序是不穩定的排序方法。
3. 冒泡排序:冒泡排序(Bubble Sort),是一種計算機科學領域的較簡單的排序演算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越大的元素會經由交換慢慢「浮」到數列的頂端。
4. 快速排序:快速排序(Quicksort)是對冒泡排序的一種改進。它的基本思想是:通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。
5. 歸並排序:歸並排序是建立在歸並操作上的一種有效的排序演算法,該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合並成一個有序表,稱為二路歸並。
6. 希爾排序:希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法便終止。
https://www.cnblogs.com/wangmingshun/p/5635292.html
Ⅹ java十大演算法
演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1 從數列中挑出一個元素,稱為 "基準"(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。
堆排序的平均時間復雜度為Ο(nlogn) 。
演算法步驟:
創建一個堆H[0..n-1]
把堆首(最大值)和堆尾互換
3. 把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4. 重復步驟2,直到堆的尺寸為1
演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
演算法步驟:
1. 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列
2. 設定兩個指針,最初位置分別為兩個已經排序序列的起始位置
3. 比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置
4. 重復步驟3直到某一指針達到序列尾
5. 將另一序列剩下的所有元素