㈠ 分析標准粒子群演算法的不足及改進的方法
一個以上的目標,以優化
相對傳統的多目標優化方法在解決多目標問題,PSO具有很大的優勢。首先,PSO演算法和高效的搜索功能,有利於在這個意義上,多目標的最優解;其次,PSO代表了整個解決方案的人口集固有的並行性,同時搜索多個非劣解,所以容易搜索多個Pareto最佳的解決方案;此外,PSO通用的適合處理所有類型的目標函數和約束條件,PSO容易與傳統相結合的方法,和然後提出了有效的方法來解決一個具體的問題。 PSO本身,為了更好地解決多目標優化問題,必須解決的問題的全局最優粒子和個人選擇的最優粒子。為全局最優粒子的選擇,一方面,該演算法具有更好的收斂速度,另一方面帕累托邊界分散體的溶液中。如果在最佳的單個顆粒的選擇,需要較少的計算復雜性,並且是僅由較少數量的比較非
劣解更新。迄今為止,基於PSO的多目標優化,主要有以下
思路:
(1)向量法和加權方法。文獻[20]的固定權重法,自適應權重法和向量評估方法的第一次,PSO解決MO問題。然而,對於一個給定的優化問題,權重的方法通常是很難獲得一組合適的權重向量評價方法MO的問題是,往往無法得到滿意的解決方案。
(2)基於Pareto方法。 [21]帕累托排序機制和PSO相結合,處理的問題,多目標優化,Pareto排序方法來選擇一組的精英,和輪盤賭選擇全局最優粒子。雖然輪盤賭選擇機制,使所有的帕累托個人選擇的概率是一樣的,但實際上只有少數人的選擇的概率就越大,因此不利於保持種群多樣性;文獻[22]通過引入在PSO帕累托競爭機制,選擇全局最優粒子的顆粒知識基礎。候選個人隨機選自人口比較集進行比較,以確定非劣解,該演算法的成功取決於比較集的大小的參數設置。如果這個參數是太小了,選擇的過程,從人口的非劣效性個人可能是太小了,如果這個參數是太大,它可能會出現過早收斂。
(3)距離的方法。 [23],被分配的各個的當前的解決方案之間的距離的基礎上Pa2reto的解決方案,其適應值,以便選擇全局最優粒子。隨著距離的方法需要被初始化潛在的解決方案,如果初始電位值太大,不同的解決方案,以適應不同的值並不顯著。這將導致在選擇壓力太小或個別均勻分布,導致在PSO演算法收斂速度非常慢。
(4)附近的「。文獻[24]提出了動態鄰域的選擇策略,為優化目標的定義,目標,和其他所有的目標定義的目標附近,然後選擇全局最優粒子的動態鄰域的策略,但該方法更敏感的目標函數的優化目標選擇和附近的排序。
(5)多組法。文獻[25]的人口劃分成多個子群,以及每個子群PSO演算法,通過搜索Pareto最優解的各種子群之間的信息交流。然而,由於需要增加的粒子的數量增加的計算量。
(6)非排名的方法。 [26]使用非主導的排序選擇全局最優的粒子。整個人口,粒子的個人最好成績粒子和它的後代,有利於提供一個適當的選擇壓力,小生境技術,以增加種群多樣性。比較所有粒子的個人最好成績顆粒在整個人群遺傳給後代,但是,由於其本身的性質是不利於人口的多樣性,容易形成早熟。此外,文獻[27]最大最小策略,博弈論引入PSO解決多MO。最大最小策略,以確定粒子的適應值,可以判斷帕累托最優的解決方案,而不需要集群和小生境技術。
2約束優化
在最近幾年也取得了一些進展,PSO演算法在約束最優化。基於PSO-的約束優化工作分為兩種類型:①罰函數法;②設計特定的進化操作或約束修正系數。 [28]採用罰函數法,採用非固定多段映射罰函數將約束的優化問題,然後利用PSO解決問題的轉換後,模擬結果表明,該演算法相對進化策略和遺傳演算法的優勢,但罰函數的設計過於復雜,不利於解決;文獻[29],一個可行的解決方案,保留策略處理約束,即,一方面要更新所有的顆粒的存儲區域中到只保留可行的解決方案,在另一方面在初始化階段的所有的顆粒從一個可行的解決方案的空間值?初始的可行的解決方案空間,然而,是難以確定的很多問題,文獻[30 ]提出的多層信息共享策略粒子群與約束原則來處理,根據約束矩陣多層Pareto排序機制的微粒,從而一些微粒,以確定個人的搜索方向的其餘。
3離散優化為離散優化解決方案空間是離散點的集合,而不是連續PSO解決離散優化問題,必須予以糾??正的速度和位置更新公式,或變形。基於PSO的離散優化可分為以下三類:
速度(1)的位置變化的概率。 [31]首先提出了離散二進制PSO。二進制粒子的位置編碼器,Sigmoid函數,速度約束在[0,1],代表粒子的概率立場;法[32] [31]在文獻
提高的地址更換安排。安排更換顆粒,速度是指根據兩個粒子的相似性,以確定粒子的位置變化也引入突變操作,以防止陷入局部極小的最優粒子的概率。
(2)重新定義的PSO的操作。 [33]通過重新定義粒子的位置,速度,和他們的加法和減法乘法運算,提出了一種新的離散粒子群,並為解決旅行商問題。雖然該演算法是有效的,但它提供了一種新的思維方式求解組合優化問題。
(3)連續PSO離散的情況下。 [34]採用連續PSO,解決分布式計算機任務的分配問題。於實數被轉換為一個正整數,和符號的實數部分和小數部分的
分除去。結果表明,在溶液中的質量和速度的方法的演算法是優於遺傳演算法。
4動態優化
在許多實際工程問題,優化環境是不確定的,或動態。因此,優化演算法必須有能力與環境的動態變化做出相應的調整,以最佳的解決方案,該演算法具有一定的魯棒性。 [35]首次提出了PSO跟蹤動態系統[36]提出了自適應PSO自動跟蹤動態系統的變化,種群粒子檢測方法和粒子重新初始化PSO系統變化的跟蹤能力增強;文獻[37]迅速變化的動態環境中,在粒子速度更新公式的變化條目的增加,消除了需要在環境中的變化來檢測,可以跟蹤環境處理。雖然該研究少得多,但不容質疑的,是一個重要的研究內容。
粒子群演算法的MATLAB程序
初始化粒子群;
對於每個粒子
計算他們的身體健康;
如果(健身優於粒子的歷史最好值)
歷史最好的個人裨錫更新;
如果選擇當前粒子群粒子;(當前的最優粒子比歷史最好粒子組)
與目前最好的粒子更新PG組;對於每個粒子
更新粒子類型①速度;
更新的位置粒子類型②;
完
雖然還沒有達到最大迭代次數,或不符合的最小誤差。
㈡ Tent映射及其改進表達式
Tent映射是一種混沌優化演算法,具有隨機性和遍歷性,該映射結構簡單,和其他演算法配合使用時實現容易。具體結構如式(8.4)所示:
高光譜遙感影像信息提取技術
由式(8.2)知,粒子位置的更新取決於粒子速度的更新,也可進一步通過對粒子速度做Tent映射變換從而間接影響粒子位置更新。本章在高光譜影像的Tent-PSO-SVM分類過程中,根據實現速度的最大與最小值設置的多次實驗,將原始Tent映射結構進行了改進處理,如式(8.5)所示:
高光譜遙感影像信息提取技術
㈢ 數學如何將[300,5000]映射到[-1,1]范圍內呢
方法有多種,最簡單的是一次函數經過點(300,-1)和(5000,1)
㈣ 映射 A={1,2,3,……,100}找一個A*A到A的映射
兩個集合,如果按照某種對應法則f,對於集合A中的任何一個元素,在集合B中都有唯一的元素和它對應,那麼這樣的對應(包括集合A,B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B
映射的簡單演算法
如果M集合有m個元素,N集合有n個元素,則從M到N的映射個數就是:n的m次方個映射
集合關於原點的映射??
例如:你把方程的圖像(1)弄出來,然後畫出與原點對稱的圖像(2),圖像(2)就是圖像(1)關於原點對稱的映射,圖像(2)整個就是圖像(1)上所有點關於原點對稱的映射點的集合。
我認為,用圖像說明比較好懂,圖像是數學解題的一大靈魂!當然,不一定所有題都是依靠圖像解,因題而定。
「U」,這在數學里叫全集。
如果集合S含有我們所要研究的每個集合的全部元素,這個集合就可以看作一個全集,全集通常用U表示。
順便給你提及一下補集,即在一個全集中,除開某一部分,剩下來的部分,就叫做在這個全集中關於除開的那個部分的補集,通常用大寫「C」表示,可以寫成「CuA」,"C"是大寫,補集符號;」u「是小寫,表示一個全集,是根據題目來定的,看具體是研究哪堆集合;」A「就是要除去的那部分,也是因題而定的,也可以是一團集合。
回答完畢。 以後你要好好復習哦。
㈤ 一個幾何區域映射為另一個幾何區域,譬如矩形映射為環形。或者映射為幾個分散的區域,什麼演算法可以做到
變數替換 例如極坐標公式將矩形映射為扇形它們面積之間的關系是S矩=雅可比行列式×S扇形 問題的關聯是如何找到這種變數間的轉換關系即映射 這是演算法的問題 很難的 就相當於你能創造新的極坐標公式 還有即使你找到了這種演算法但你的目的何在 比如極坐標替換在求面積方面是為了求S矩(但然不是普通的矩形面積 一般是曲線於坐標軸圍的面積)這樣做的條件是S矩很難直接記算出而於此對應的S扇有很好的可求性 所以你的目的何在 就只是簡單的映射沒有進一步的目的嗎 如若有可能還要找對應的『雅可比行列式』 個人建議 如果你是學生最好找一個數學系的老師共同研究
㈥ 粒子群演算法的引言
優化問題是工業設計中經常遇到的問題,許多問題最後都可以歸結為優化問題. 為了解決各種各樣的優化問題,人們提出了許多優化演算法,比較著名的有爬山法、遺傳演算法、神經網路演算法等. 一是要求尋找全局最優點,
二是要求有較高的收斂速度. 近年來,一些學者將PSO演算法推廣到約束優化問題,其關鍵在於如何處理好約束,即解的可行性。如果約束處理的不好,其優化的結果往往會出現不能夠收斂和結果是空集的狀況。基於PSO演算法的約束優化工作主要分為兩類:
(1)罰函數法。罰函數的目的是將約束優化問題轉化成無約束優化問題。
(2)將粒子群的搜索范圍都限制在條件約束簇內,即在可行解范圍內尋優。
根據文獻介紹,Parsopoulos等採用罰函數法,利用非固定多段映射函數對約束優化問題進行轉化,再利用PSO演算法求解轉化後問題,模擬結果顯示PSO演算法相對遺傳演算法更具有優越性,但其罰函數的設計過於復雜,不利於求解;Hu等採用可行解保留政策處理約束,即一方面更新存儲中所有粒子時僅保留可行解,另一方面在初始化階段所有粒子均從可行解空間取值,然而初始可行解空間對於許多問題是很難確定的;Ray等提出了具有多層信息共享策略的粒子群原理來處理約束,根據約束矩陣採用多層Pareto排序機制來產生優良粒子,進而用一些優良的粒子來決定其餘個體的搜索方向。
但是,目前有關運用PSO演算法方便實用地處理多約束目標優化問題的理論成果還不多。處理多約束優化問題的方法有很多,但用PSO演算法處理此類問題目前技術並不成熟,這里就不介紹了。 粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源於對鳥群捕食的行為研究 。該演算法最初是受到飛鳥集群活動的規律性啟發,進而利用群體智能建立的一個簡化模型。粒子群演算法在對動物集群活動行為觀察基礎上,利用群體中的個體對信息的共享使整個群體的運動在問題求解空間中產生從無序到有序的演化過程,從而獲得最優解。
PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。但是它沒有遺傳演算法用的交叉(crossover)以及變異(mutation),而是粒子在解空間追隨最優的粒子進行搜索。同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域。
㈦ 演算法效率與分析
演算法效率與分析
數據結構作為程序設計的基礎,其對演算法效率的影響必然是不可忽視的。本文就如何合理選擇數據結構來優化演算法這一問題,對選擇數據結構的原則和方法進行了一些探討。首先對數據邏輯結構的重要性進行了分析,提出了選擇邏輯結構的兩個基本原則;接著又比較了順序和鏈式兩種存儲結構的優點和缺點,並討論了選擇數據存儲結構的方法;最後本文從選擇數據結構的的另一角度出發,進一步探討了如何將多種數據結構進行結合的方法。在討論方法的同時,本文還結合實際,選用了一些較具有代表性的信息學競賽試題舉例進行了分析
【正文】一、引論
「數據結構+演算法=程序」,這就說明程序設計的實質就是對確定的問題選擇一種合適的數據結構,加上設計一種好的演算法。由此可見,數據結構在程序設計中有著十分重要的地位。
數據結構是相互之間存在一種或多種特定關系的數據元素的集合。因為這其中的「關系」,指的是數據元素之間的邏輯關系,因此數據結構又稱為數據的邏輯結構。而相對於邏輯結構這個比較抽象的概念,我們將數據結構在計算機中的表示又稱為數據的存儲結構。
建立問題的數學模型,進而設計問題的演算法,直至編出程序並進行調試通過,這就是我們解決信息學問題的一般步驟。我們要建立問題的數學模型,必須首先找出問題中各對象之間的關系,也就是確定所使用的邏輯結構;同時,設計演算法和程序實現的過程,必須確定如何實現對各個對象的操作,而操作的方法是決定於數據所採用的存儲結構的。因此,數據邏輯結構和存儲結構的好壞,將直接影響到程序的效率。
二、選擇合理的邏輯結構
在程序設計中,邏輯結構的選用就是要分析題目中的數據元素之間的關系,並根據這些特定關系來選用合適的邏輯結構以實現對問題的數學描述,進一步解決問題。邏輯結構實際上是用數學的方法來描述問題中所涉及的操作對象及對象之間的關系,將操作對象抽象為數學元素,將對象之間的復雜關系用數學語言描述出來。
根據數據元素之間關系的不同特性,通常有以下四種基本邏輯結構:集合、線性結構、樹形結構、圖狀(網狀)結構。這四種結構中,除了集合中的數據元素之間只有「同屬於一個集合」的關系外,其它三種結構數據元素之間分別為「一對一」、「一對多」、「多對多」的關系。
因此,在選擇邏輯結構之前,我們應首先把題目中的操作對象和對象之間的關系分析清楚,然後再根據這些關系的特點來合理的選用邏輯結構。尤其是在某些復雜的問題中,數據之間的關系相當復雜,且選用不同邏輯結構都可以解決這一問題,但選用不同邏輯結構實現的演算法效率大不一樣。
對於這一類問題,我們應採用怎樣的標准對邏輯結構進行選擇呢?
下文將探討選擇合理邏輯結構應充分考慮的兩個因素。
一、 充分利用「可直接使用」的信息。
首先,我們這里所講的「信息」,指的是元素與元素之間的關系。
對於待處理的信息,大致可分為「可直接使用」和「不可直接使用」兩類。對於「可直接使用」的信息,我們使用時十分方便,只需直接拿來就可以了。而對於「不可直接使用」的這一類,我們也可以通過某些間接的方式,使之成為可以使用的信息,但其中轉化的過程顯然是比較浪費時間的。
由此可見,我們所需要的是盡量多的「可直接使用」的信息。這樣的信息越多,演算法的效率就會越高。
對於不同的邏輯結構,其包含的信息是不同的,演算法對信息的利用也會出現不同的復雜程度。因此,要使演算法能夠充分利用「可直接使用」的信息,而避免演算法在信息由「不可直接使用」向「可直接使用」的轉化過程中浪費過多的時間,我們必然需要採用一種合理的邏輯結構,使其包含更多「可直接使用」的信息。
〖問題一〗 IOI99的《隱藏的碼字》。
〖問題描述〗
問題中給出了一些碼字和一個文本,要求編程找出文本中包含這些碼字的所有項目,並將找出的項目組成一個最優的「答案」,使得答案中各項目所包含的碼字長度總和最大。每一個項目包括一個碼字,以及該碼字在文本中的一個覆蓋序列(如』abcadc』就是碼字』abac』的一個覆蓋序列),並且覆蓋序列的長度不超過1000。同時,「答案」要求其中每個項目的覆蓋序列互相沒有重疊。
〖問題分析〗
對於此題,一種較容易得出的基本演算法是:對覆蓋序列在文本中的終止位置進行循環,再判斷包含了哪些碼字,找出所有項目,並最後使用動態規劃的方法將項目組成最優的「答案」。
演算法的其它方面我們暫且不做考慮,而先對問題所採用的邏輯結構進行選擇。
如果我們採用線性的邏輯結構(如循環隊列),那麼我們在判斷是否包含某個碼字t時,所用的方法為:初始時用指針p指向終止位置,接著通過p的不斷前移,依次找出碼字t從尾到頭的各個字母。例如碼字為「ABDCAB」,而文本圖1-1,終止位置為最右邊的箭頭符號,每個箭頭代表依次找到的碼字的各個字母。
指針p的移動方向
A B D C A B
C D A C B D C A D C D B A D C C B A D
圖1-1
由於題目規定碼字的覆蓋序列長度不超過1000,所以進行這樣的一次是否包含的判斷,其復雜度為O(1000)。
由於碼字t中相鄰兩字母在文本中的位置,並非只有相鄰(如圖1-1中的』D』和』C』)這一種關系,中間還可能間隔了許多的字母(如圖1-1中』C』和』A』就間隔了2個字母),而線性結構中擁有的信息,僅僅只存在於相鄰的兩元素之間。通過這樣簡單的信息來尋找碼字的某一個字母,其效率顯然不高。
如果我們建立一個有向圖,其中頂點i(即文本的第i位)用52條弧分別連接』a』..』z』,』A』..』Z』這52個字母在i位以前最後出現的位置(如圖1-2的連接方式),我們要尋找碼字中某個字母的前一個字母,就可以直接利用已連接的邊,而不需用枚舉的方法。我們也可以把問題看為:從有向圖的一個頂點出發,尋找一條長度為length(t)-1的路徑,並且路徑中經過的頂點,按照碼字t中的字母有序。
C D A C B D C A D C D B A D C C B A D
圖1-2
通過計算,用圖進行記錄在空間上完全可以承受(記錄1000個點×52條弧×4位元組的長整型=200k左右)。在時間上,由於可以充分利用第i位和第i+1位弧的連接方式變化不大這一點(如圖1-2所示,第i位和第i+1位只有一條弧的指向發生了變化,即第i+1位將其中一條弧指向了第i位),所以要對圖中的弧進行記錄,只需對弧的指向進行整體賦值,並改變其中的某一條弧即可。
因此,我們通過採用圖的邏輯結構,使得尋找字母的效率大大提高,其判斷的復雜度為O(length(t)),最壞為O(100),比原來方法的判斷效率提高了10倍。
(附程序codes.pas)
對於這個例子,雖然用線性的數據結構也可以解決,但由於判斷的特殊性,每次需要的信息並不能從相鄰的元素中找到,而線性結構中只有相鄰元素之間存在關系的這一點,就成為了一個很明顯的缺點。因此,問題一線性結構中的信息,就屬於「不可直接使用」的信息。相對而言,圖的結構就正好滿足了我們的需要,將所有可能產生關系的點都用弧連接起來,使我們可以利用弧的關系,高效地進行判斷尋找的過程。雖然圖的結構更加復雜,但卻將「不可直接使用」的信息,轉化成為了「可直接使用」的信息,演算法效率的提高,自然在情理之中。。
二、 不記錄「無用」信息。
從問題一中我們看到,由於圖結構的信息量大,所以其中的信息基本上都是「可用」的。但是,這並不表示我們就一定要使用圖的結構。在某些情況下,圖結構中的「可用」信息,是有些多餘的。
信息都「可用」自然是好事,但倘若其中「無用」(不需要)的信息太多,就只會增加我們思考分析和處理問題時的復雜程度,反而不利於我們解決問題了。
〖問題二〗 湖南省1997年組隊賽的《乘船問題》
〖問題描述〗
有N個人需要乘船,而每船最多隻能載兩人,且必須同名或同姓。求最少需要多少條船。
〖問題分析〗
看到這道題,很多人都會想到圖的數據結構:將N個人看作無向圖的N個點,凡同名或同姓的人之間都連上邊。
要滿足用船最少的條件,就是需要盡量多的兩人共乘一條船,表現在圖中就是要用最少的邊完成對所有頂點的覆蓋。這就正好對應了圖論的典型問題:求最小邊的覆蓋。所用的演算法為「求任意圖最大匹配」的演算法。
使用「求任意圖最大匹配」的演算法比較復雜(要用到擴展交錯樹,對花的收縮等等),效率也不是很高。因此,我們必須尋找一個更簡單高效的方法。
首先,由於圖中任兩個連通分量都是相對獨立的,也就是說任一條匹配邊的兩頂點,都只屬於同一個連通分量。因此,我們可以對每個連通分量分別進行處理,而不會影響最終的結果。
同時,我們還可以對需要船隻s的下限進行估計:
對於一個包含Pi個頂點的連通分量,其最小覆蓋邊數顯然為[Pi/2]。若圖中共有L個連通分量,則s=∑[Pi/2](1<=i<=L)。
然後,我們通過多次嘗試,可得出一個猜想:
實際需要的覆蓋邊數完全等於我們求出的下限∑[Pi/2](1<=i<=L)。
要用圖的結構對上述猜想進行證明,可參照以下兩步進行:
1. 連通分量中若不存在度為1的點,就必然存在迴路。
2. 從圖中刪去度為1的點及其相鄰的點,或刪去迴路中的任何一邊,連通分量依然連通,即連通分量必然存在非橋邊。
由於圖的方法不是這里的重點,所以具體證明不做詳述。而由採用圖的數據結構得出的演算法為:每次輸出一條非橋的邊,並從圖中將邊的兩頂點刪去。此演算法的時間復雜度為O(n3)。(尋找一條非橋邊的復雜度為O(n2),尋找覆蓋邊操作的復雜度為O(n))
由於受到圖結構的限制,時間復雜度已經無法降低,所以如果我們要繼續對演算法進行優化,只有考慮使用另一種邏輯結構。這里,我想到了使用二叉樹的結構,具體說就是將圖中的連通分量都轉化為二叉樹,用二叉樹來解決問題。
首先,我們以連通分量中任一個頂點作為樹根,然後我們來確定建樹的方法。
1. 找出與根結點i同姓的點j(j不在二叉樹中)作為i的左兒子,再以j為樹根建立子樹。
2. 找出與根結點i同名的點k(k不在二叉樹中)作為i的右兒子,再以k為樹根建立子樹。
如圖2-1-1中的連通分量,我們通過上面的建樹方法,可以使其成為圖2-1-2中的二叉樹的結構(以結點1為根)。(兩點間用實線表示同姓,虛線表示同名)
圖2-1-2
圖2-1-1
接著,我就來證明這棵樹一定包含了連通分量中的所有頂點。
【引理2.1】
若二叉樹T中包含了某個結點p,那麼連通分量中所有與p同姓的點一定都在T中。
證明:
為了論證的方便,我們約定:s表示與p同姓的頂點集合;lc[p,0]表示結點p,lc[p,i](i>0)表示lc[p,i-1]的左兒子,顯然lc[p,i]與p是同姓的。
假設存在某個點q,滿足qs且qT。由於s是有限集合,因而必然存在某個lc[p,k]無左兒子。則我們可以令lc[p,k+1]=q,所以qT,與假設qT相矛盾。
所以假設不成立,原命題得證。
由引理2.1的證明方法,我們同理可證引理2.2。
【引理2.2】
若二叉樹T中包含了某個結點p,那麼連通分量中所有與p同名的點一定都在T中。
有了上面的兩個引理,我們就不難得出下面的定理了。
【定理一】
以連通分量中的任一點p作為根結點的二叉樹,必然能夠包含連通分量中的所有頂點。
證明:
由引理2.1和引理2.2,所有與p同姓或同名的點都一定在二叉樹中,即連通分量中所有與p有邊相連的點都在二叉樹中。由連通分量中任兩點間都存在路徑的特性,該連通分量中的所有點都在二叉樹中。
在證明二叉樹中包含了連通分量的所有頂點後,我們接著就需要證明我們的猜想,也就是下面的定理:
【定理二】包含m個結點的二叉樹Tm,只需要船的數量為boat[m]=[m/2](mN)。
證明:
(i) 當m=1,m=2,m=3時命題顯然成立。
圖2-2-1
圖2-2-2
圖2-2-3
(ii) 假設當m<k(k>3)時命題成立,那麼當m=k時,我們首先從樹中找到一個層次最深的結點,並假設這個結點的父親為p。那麼,此時有且只有以下三種情況(結點中帶有陰影的是p結點):
(1) 如圖2-2-1,p只有一個兒子。此時刪去p和p唯一的兒子,Tk就成為了Tk-2,則boat[k]=boat[k-2]+1=[(k-2)/2]+1=[k/2]。
(2) 如圖2-2-2,p有兩個兒子,並且p是其父親的左兒子。此時可刪去p和p的右兒子,並可將p的左兒子放到p的位置上。同樣地,Tk成為了Tk-2,boat[k]=boat[k-2]+1=[k/2]。
(3) 如圖2-2-3,p有兩個兒子,並且p是其父親的右兒子。此時可刪去p和p的左兒子,並可將p的右兒子放到p的位置上。情況與(2)十分相似,易得此時得boat[k]=boat[k-2]+1=[k/2]。
綜合(1)、(2)、(3),當m=k時,boat[k]=[k/2]。
最後,綜合(i)、(ii),對於一切mN,boat[m]=[m/2]。
由上述證明,我們將問題中數據的圖結構轉化為樹結構後,可以得出求一棵二叉樹的乘船方案的演算法:
proc try(father:integer;var root:integer;var rest:byte);
{輸出root為樹根的子樹的乘船方案,father=0表示root是其父親的左兒子,
father=1表示root是其父親的右兒子,rest表示輸出子樹的乘船方案後,
是否還剩下一個根結點未乘船}
begin
visit[root]:=true; {標記root已訪問}
找到一個與root同姓且未訪問的結點j;
if j<>n+1 then try(0,j,lrest);
找到一個與root同姓且未訪問的結點k;
if k<>n+1 then try(1,k,rrest);
if (lrest=1) xor (rrest=1) then begin {判斷root是否只有一個兒子,情況一}
if lrest=1 then print(lrest,root) else print(rrest,root);
rest:=0;
end
else if (lrest=1) and (rrest=1) then begin {判斷root是否有兩個兒子}
if father=0 then begin
print(rrest,root);root:=j; {情況二}
end
else begin
print(lrest,root);root:=k; {情況三}
end;
rest:=1;
end
else rest:=1;
end;
這只是輸出一棵二叉樹的乘船方案的演算法,要輸出所有人的乘船方案,我們還需再加一層循環,用於尋找各棵二叉樹的根結點,但由於每個點都只會訪問一次,尋找其左右兒子各需進行一次循環,所以演算法的時間復雜度為O(n2)。(附程序boat.pas)
最後,我們對兩種結構得出不同時間復雜度演算法的原因進行分析。其中最關鍵的一點就是因為二叉樹雖然結構相對較簡單,但已經包含了幾乎全部都「有用」的信息。由我們尋找乘船方案的演算法可知,二叉樹中的所有邊不僅都發揮了作用,而且沒有重復的使用,可見信息的利用率也是相當之高的。
既然採用樹結構已經足夠,圖結構中的一些信息就顯然就成為了「無用」的信息。這些多餘的「無用」信息,使我們在分析問題時難於發現規律,也很難找到高效的演算法進行解決。這正如迷宮中的牆一樣,越多越難走。「無用」的信息,只會干擾問題的規律性,使我們更難找出解決問題的方法。
小結
我們對數據的邏輯結構進行選擇,是構造數學模型一大關鍵,而演算法又是用來解決數學模型的。要使演算法效率高,首先必須選好數據的邏輯結構。上面已經提出了選擇邏輯結構的兩個條件(思考方向),總之目的是提高信息的利用效果。利用「可直接使用」的信息,由於中間不需其它操作,利用的效率自然很高;不不記錄「無用」的信息,就會使我們更加專心地研究分析「有用」的信息,對信息的使用也必然會更加優化。
總之,在解決問題的過程中,選擇合理的邏輯結構是相當重要的環
三、 選擇合理的存儲結構
數據的存儲結構,分為順序存儲結構和鏈式存儲結構。順序存儲結構的特點是藉助元素在存儲器中的相對位置來表示數據元素之間的邏輯關系;鏈式存儲結構則是藉助指示元素存儲地址的指針表示數據元素之間的邏輯關系。
因為兩種存儲結構的不同,導致這兩種存儲結構在具體使用時也分別存在著優點和缺點。
這里有一個較簡單的例子:我們需要記錄一個n×n的矩陣,矩陣中包含的非0元素為m個。
此時,我們若採用順序存儲結構,就會使用一個n×n的二維數組,將所有數據元素全部記錄下來;若採用鏈式存儲結構,則需要使用一個包含m個結點的鏈表,記錄所有非0的m個數據元素。由這樣兩種不同的記錄方式,我們可以通過對數據的不同操作來分析它們的優點和缺點。
1. 隨機訪問矩陣中任意元素。由於順序結構在物理位置上是相鄰的,所以可以很容易地獲得任意元素的存儲地址,其復雜度為O(1);對於鏈式結構,由於不具備物理位置相鄰的特點,所以首先必須對整個鏈表進行一次遍歷,尋找需進行訪問的元素的存儲地址,其復雜度為O(m)。此時使用順序結構顯然效率更高。
2. 對所有數據進行遍歷。兩種存儲結構對於這種操作的復雜度是顯而易見的,順序結構的復雜度為O(n2),鏈式結構為O(m)。由於在一般情況下m要遠小於n2,所以此時鏈式結構的效率要高上許多。
除上述兩種操作外,對於其它的操作,這兩種結構都不存在很明顯的優點和缺點,如對鏈表進行刪除或插入操作,在順序結構中可表示為改變相應位置的數據元素。
既然兩種存儲結構對於不同的操作,其效率存在較大的差異,那麼我們在確定存儲結構時,必須仔細分析演算法中操作的需要,合理地選擇一種能夠「揚長避短」的存儲結構。
一、合理採用順序存儲結構。
我們在平常做題時,大多都是使用順序存儲結構對數據進行存儲。究其原因,一方面是出於順序結構操作方便的考慮,另一方面是在程序實現的過程中,使用順序結構相對於鏈式結構更便於對程序進行調試和查找錯誤。因此,大多數人習慣上認為,能夠使用順序結構進行存儲的問題,最「好」採用順序存儲結構。
其實,這個所謂的「好」只是一個相對的標准,是建立在以下兩個前提條件之下的:
1. 鏈式結構存儲的結點與順序結構存儲的結點數目相差不大。這種情況下,由於存儲的結點數目比較接近,使用鏈式結構完全不能體現出記錄結點少的優點,並且可能會由於指針操作較慢而降低演算法的效率。更有甚者,由於指針自身佔用的空間較大,且結點數目較多,因而演算法對空間的要求可能根本無法得到滿足。
2. 並非演算法效率的瓶頸所在。由於不是演算法最費時間的地方,這里是否進行改進,顯然是不會對整個演算法構成太大影響的,若使用鏈式結構反而會顯得操作過於繁瑣。
二、必要時採用鏈式存儲結構。
上面我對使用順序存儲結構的條件進行了分析,最後就只剩下何時應該採用鏈式存儲結構的問題了。
由於鏈式結構中指針操作確實較繁瑣,並且速度也較慢,調試也不方便,因而大家一般都不太願意用鏈式的存儲結構。但是,這只是一般的觀點,當鏈式結構確實對演算法有很大改進時,我們還是不得不進行考慮的。
〖問題三〗 IOI99的《地下城市》。
〖問題描述〗
已知一個城市的地圖,但未給出你的初始位置。你需要通過一系列的移動和探索,以確定初始時所在的位置。題目的限制是:
1. 不能移動到有牆的方格。
2. 只能探索當前所在位置四個方向上的相鄰方格。
在這兩個限制條件下,要求我們的探索次數(不包括移動)盡可能的少。
〖問題分析〗
由於存儲結構要由演算法的需要確定,因此我們首先來確定問題的演算法。
經過對問題的分析,我們得出解題的基本思想:先假設所有無牆的方格都可能是初始位置,再通過探索一步步地縮小初始位置的范圍,最終得到真正的初始位置。同時,為提高演算法效率,我們還用到了分治的思想,使我們每一次探索都盡量多的縮小初始位置的范圍(使程序盡量減少對運氣的依賴)。
接著,我們來確定此題的存儲結構。
由於這道題的地圖是一個二維的矩陣,所以一般來講,採用順序存儲結構理所當然。但是,順序存儲結構在這道題中暴露了很大的缺點。我們所進行的最多的操作,一是對初始位置的范圍進行篩選,二是判斷要選擇哪個位置進行探索。而這兩種操作,所需要用到的數據,只是龐大地圖中很少的一部分。如果採用順序存儲結構(如圖3-1中陰影部分表示已標記),無論你需要用到多少數據,始終都要完全的遍歷整個地圖。
4
3
2
1
1 2 3 4
圖3-1
head
圖3-2
然而,如果我們採用的是鏈式存儲結構(如圖3-2的鏈表),那麼我們需要多少數據,就只會遍歷多少數據,這樣不僅充分發揮了鏈式存儲結構的優點,而且由於不需單獨對某一個數據進行提取,每次都是對所有數據進行判斷,從而避免了鏈式結構的最大缺點。
我們使用鏈式存儲結構,雖然沒有降低問題的時間復雜度(鏈式存儲結構在最壞情況下的存儲量與順序存儲結構的存儲量幾乎相同),但由於體現了前文所述選擇存儲結構時揚長避短的原則,因而演算法的效率也大為提高。(程序對不同數據的運行時間見表3-3)
測試數據編號 使用順序存儲結構的程序 使用鏈式存儲結構的程序
1 0.06s 0.02s
2 1.73s 0.07s
3 1.14s 0.06s
4 3.86s 0.14s
5 32.84s 0.21s
6 141.16s 0.23s
7 0.91s 0.12s
8 6.92s 0.29s
9 6.10s 0.23s
10 17.41s 0.20s
表3-3
(附使用鏈式存儲結構的程序under.pas)
我們選擇鏈式的存儲結構,雖然操作上可能稍復雜一些,但由於改進了演算法的瓶頸,演算法的效率自然也今非昔比。由此可見,必要時選擇鏈式結構這一方法,其效果是不容忽視的。
小結
合理選擇邏輯結構,由於牽涉建立數學模型的問題,可能大家都會比較注意。但是對存儲結構的選擇,由於不會對演算法復雜度構成影響,所以比較容易忽視。那麼,這種不能降低演算法復雜度的方法是否需要重視呢?
大家都知道,剪枝作為一種常用的優化演算法的方法,被廣泛地使用,但剪枝同樣是無法改變演算法的復雜度的。因此,作用與剪枝相似的存儲結構的合理選擇,也是同樣很值得重視的。
總之,我們在設計演算法的過程中,必須充分考慮存儲結構所帶來的不同影響,選擇最合理的存儲結構。
四、 多種數據結構相結合
上文所探討的,都是如何對數據結構進行選擇,其中包含了邏輯結構的選擇和存儲結構的選擇,是一種具有較大普遍性的演算法優化方法。對於多數的問題,我們都可以通過選擇一種合理的邏輯結構和存儲結構以達到優化演算法的目的。
但是,有些問題卻往往不如人願,要對這類問題的數據結構進行選擇,常常會顧此失彼,有時甚至根本就不存在某一種合適的數據結構。此時,我們是無法選擇出某一種合適的數據結構的,以上的方法就有些不太適用了。
為解決數據結構難以選擇的問題,我們可以採用將多種數據結構進行結合的方法。通過多種數據結構相結合,達到取長補短的作用,使不同的數據結構在演算法中發揮出各自的優勢。
這只是我們將多種數據結構進行結合的總思想,具體如何進行結合,我們可以先看下面的例子。
我們可以採用映射的方法,將線性結構中的元素與堆中間的結點一一對應起來,若線性的數組中的元素發生變化,堆中相應的結點也接著變化,堆中的結點發生變化,數組中相應的元素也跟著變化。
將兩種結構進行結合後,無論是第一步還是第二步,我們都不需對所有元素進行遍歷,只需進行常數次復雜度為O(log2n)的堆化操作。這樣,整個時間復雜度就成為了O(nlog2n),演算法效率無疑得到了很大提高。
五、 總結
我們平常使用數據結構,往往只將其作為建立模型和演算法實現的工具,而沒有考慮這種工具對程序效率所產生的影響。信息學問題隨著難度的不斷增大,對演算法時空效率的要求也越來越高,而演算法的時空效率,在很大程度上都受到了數據結構的制約。
㈧ Tent映射與PSO演算法用於波段尋優的思想
高光譜遙感對地物光譜特徵進行了細致的刻畫,提高了地物識別的可靠性,但是隨著光譜維數增加也帶來了大量冗餘數據,給高光譜數據處理與信息識別等增添了負擔,同時也會影響地物識別的精度,故地物識別時對高光譜數據進行降維、選取特徵波段就顯得非常重要。支持向量機(Support Vector Machine,SVM)是一種機器學習演算法,由美國貝爾實驗室Vapnik針對分類和回歸問題,為適合小樣本學習問題首先提出來的(Vapnik,1995),SVM具有很好的泛化能力,並在一定程度上克服了機器學習的維數災難。近年來,SVM以及基於其他演算法改進的SVM用於高光譜影像的分類得到了廣泛應用,並取得了很好的分類精度(Melgani et al.,2004;李祖傳等,2011)。但針對高光譜數據冗餘性,粒子群優化(Particle Swarm Optimization,PSO)演算法在尋找最優特徵波段組合與進一步提高SVM分類精度方面具有較好的優勢。
PSO演算法是一種通過個體與群體之間的協作來尋找最優解的機器學習演算法,具有自適應,自組織以及快速得到最優解的能力。PSO演算法首先由Kennedy和Eberhart提出來的,後來為了使PSO有更廣泛的應用范圍,他們又提出了二進制PSO演算法(Kennedy et al.,1995,1997;Khanesar et al.,2007;張浩等,2008)。自從PSO演算法提出以來,該演算法已經在各個研究領域得到了廣泛的關注。在高光譜遙感應用方面,Monteiro和Kosugi(2007)提出基於PSO的高光譜影像最佳波段組合和最佳波段數的選取方法,並通過實驗和傳統波段選取方法相比較,證明了基於PSO進行特徵波段選取的優越性。丁勝等(2010)提出一種PSO-BSSVM分類模型,用於高光譜影像特徵波段的選取以及對SVM的參數尋優,通過和其他方法的實驗比較得出該模型可以提高分類精度。李林宜和李德仁(2011)也在模糊特徵的選取中也用了PSO演算法。總之PSO在高光譜影像分類的特徵波段選取中應用比較成功,但由於PSO容易早熟,陷入局部最優,所以針對這點以及為獲得更高的SVM分類精度,對PSO加以改進是非常有意義的。Tent映射是混沌理論中典型的混沌映射例子,Tent映射具有隨機性和遍歷性,所以把Tent映射加入PSO可以對PSO演算法容易陷入局部最優的狀況進行改善。本章就主要通過改進Tent映射後運用於二進制PSO演算法進行尋優,尋找高光譜影像SVM分類的最優特徵波段組合。
㈨ 色調映射的色調映射演算法
在最近幾年中已經開發了各種各樣的色調映射演算法 用於生成前一幅圖像的六幅不同曝光程度的圖像
另外一組更加復雜的演算法是基於對比度或者梯度域的方法,這些演算法的側重點在於對比度的保持而不是亮度的映射,這種方法的思路起源於人眼對於對比度或者不同亮度區域的亮度比例最為敏感。這種色調映射由於較好地保存了對比度細節,所以通常會產生非常銳利的圖像,但是這樣做的代價是使得整體的圖像對比度變得平緩。