❶ 珠算的演算法口訣
珠算四則運算皆用一套口訣指導撥珠完成。加減法,明代稱「上法」和「退法」,其口訣為珠算所特有,最早見於吳敬《九章演算法比類大全》(1450)。乘法所用的「九九」口訣,起源甚早,春秋戰國時已在籌算中應用。北宋科學家沈括在其《夢溪筆談》卷十八中介紹「增成法」時說:「唯增成一法稍異,其術都不用乘除,但補虧就盈而已。假如欲九除者增一便是,八除者增二便是,但一位一因之」。「九除者增一」,後來變為「九一下加一」,「八除者增二」後來變為「八一下加二」等口訣。可見「增成法」就是「歸除法」的前身。楊輝在《乘除通變算寶》中,敘述了「九歸」,他在當時流傳的四句「古括」上,添注了新的口訣三十二句,與現今口訣接近。元代朱世傑的《算學啟蒙》(1299,卷上)載有九歸口訣三十六句,和現今通行的口訣大致相同。14世紀中丁巨撰演算法八卷(1355),內有「撞歸口訣」。總之,歸除口訣的全部完成在元代。有了四則口訣,珠算的演算法就形成了一個體系,長期沿用了下來。
❷ 十六進制轉換成十進制的具體演算法
十六進制轉換成十進制的具體演算法是:
1、首先明白16進制數(從右到左數是第0位,第1位,第2位……)的第0位的權值為16的0次方,第1位的權值為16的1次方,第2位的權值為16的2次方,依次這樣排列下去。
2、明白ABCDEF表示的二進制數字分別是10,11,12,13,14,15。
3、十六進制轉換成十進制的公式是:要從右到左用二進制的每個數去乘以16的相應次方,然後這些數字相加就是了。
在進行進制轉換時有一基本原則:
轉換後表達的「量」的多少不能發生改變。二進制中的111個蘋果和十進制中的7個蘋果是一樣多的。
十進制中的數位排列是這樣的…… 萬 千 百 十 個 十分 百分 千分……
R進制中的數位排列是這樣的……R^4 R^3R^2 R^1 R^0 R^-1 R^-2 R^-3……
可以看出相鄰的數位間相差進制的一次方。