導航:首頁 > 源碼編譯 > 類似meanshift的演算法

類似meanshift的演算法

發布時間:2024-10-29 11:24:00

『壹』 視覺追蹤的典型演算法

(1)基於區域的跟蹤演算法
基於區域的跟蹤演算法基本思想是:將目標初始所在區域的圖像塊作為目標模板,將目標模板與候選圖像中所有可能的位置進行相關匹配,匹配度最高的地方即為目標所在的位置。最常用的相關匹配准則是差的平方和准則,(Sum of Square Difference,SSD)。
起初,基於區域的跟蹤演算法中所用到的目標模板是固定的,如 Lucas 等人提出 Lucas-Kanade 方法,該方法利用灰度圖像的空間梯度信息尋找最佳匹配區域,確定目標位置。之後,更多的學者針對基於區域方法的缺點進行了不同的改進,如:Jepson 等人提出的基於紋理特徵的自適應目標外觀模型[18],該模型可以較好的解決目標遮擋的問題,且在跟蹤的過程中採用在線 EM 演算法對目標模型進行更新;Comaniciu 等人[19]提出了基於核函數的概率密度估計的視頻目標跟蹤演算法,該方法採用核直方圖表示目標,通過 Bhattacharya 系數計算目標模板與候選區域的相似度,通過均值漂移(MeanShift)演算法快速定位目標位置。
基於區域的目標跟蹤演算法採用了目標的全局信息,比如灰度信息、紋理特徵等,因此具有較高的可信度,即使目標發生較小的形變也不影響跟蹤效果,但是當目標發生較嚴重的遮擋時,很容易造成跟蹤失敗。
(2)基於特徵的跟蹤方法
基於特徵的目標跟蹤演算法通常是利用目標的一些顯著特徵表示目標,並通過特徵匹配在圖像序列中跟蹤目標。該類演算法不考慮目標的整體特徵,因此當目標被部分遮擋時,仍然可以利用另一部分可見特徵完成跟蹤任務,但是該演算法不能有效處理全遮擋、重疊等問題。
基於特徵的跟蹤方法一般包括特徵提取和特徵匹配兩個過程:
a) 特徵提取
所謂特徵提取是指從目標所在圖像區域中提取合適的描繪性特徵。這些特徵不僅應該較好地區分目標和背景,而且應對目標尺度伸縮、目標形狀變化、目標遮擋等情況具有魯棒性。常用的目標特徵包括顏色特徵、灰度特徵、紋理特徵、輪廓、光流特徵、角點特徵等。D.G. Lowe 提出 SIFT(Scale Invariant Feature Transform)演算法[20]是圖像特徵中效果較好的一種方法,該特徵對旋轉、尺度縮放、亮度變化具有不變性,對視角變化、仿射變換、雜訊也具有一定的穩定性。
b) 特徵匹配
特徵匹配就是採用一定的方式計算衡量候選區域與目標區域的相似性,並根據相似性確定目標位置、實現目標跟蹤。在計算機視覺領域中,常用的相似性度量准則包括加權距離、Bhattacharyya 系數、歐式距離、Hausdorff 距離等。其中,Bhattacharyya 系數和歐式距離最為常用。
Tissainayagam 等人提出了一種基於點特徵的目標跟蹤演算法[21]。該演算法首先在多個尺度空間中尋找局部曲率最大的角點作為關鍵點,然後利用提出的MHT-IMM 演算法跟蹤這些關鍵點。這種跟蹤演算法適用於具有簡單幾何形狀的目標,對於難以提取穩定角點的復雜目標,則跟蹤效果較差。
Zhu 等人提出的基於邊緣特徵的目標跟蹤演算法[22],首先將參考圖像劃分為多個子區域,並將每個子區域的邊緣點均值作為目標的特徵點,然後利用類似光流的方法進行特徵點匹配,從而實現目標跟蹤。
(3)基於輪廓的跟蹤方法
基於輪廓的目標跟蹤方法需要在視頻第一幀中指定目標輪廓的位置,之後由微分方程遞歸求解,直到輪廓收斂到能量函數的局部極小值,其中,能量函數通常與圖像特徵和輪廓光滑度有關。與基於區域的跟蹤方法相比,基於輪廓的跟蹤方法的計算復雜度小,對目標的部分遮擋魯棒。但這種方法在跟蹤開始時需要初始化目標輪廓,因此對初始位置比較敏感,跟蹤精度也被限制在輪廓級。
Kass 等人[23]於 1987 年提出的活動輪廓模型(Active Contour Models,Snake),通過包括圖像力、內部力和外部約束力在內的三種力的共同作用控制輪廓的運動。內部力主要對輪廓進行局部的光滑性約束,圖像力則將曲線推向圖像的邊緣,而外部力可以由用戶指定,主要使輪廓向期望的局部極小值運動,。
Paragios 等人[24]提出了一種用水平集方法表示目標輪廓的目標檢測與跟蹤演算法,該方法首先通過幀差法得到目標邊緣,然後通過概率邊緣檢測運算元得到目標的運動邊緣,通過將目標輪廓向目標運動邊緣演化實現目標跟蹤。
(4)基於模型的跟蹤方法[25]
在實際應用中,我們需要跟蹤的往往是一些特定的我們事先具有認識的目標,因此,基於模型的跟蹤方法首先根據自己的先驗知識離線的建立該目標的 3D 或2D 幾何模型,然後,通過匹配待選區域模型與目標模型實現目標跟蹤,進而在跟蹤過程中,根據場景中圖像的特徵,確定運動目標的各個尺寸參數、姿態參數以及運動參數。
Shu Wang 等人提出一種基於超像素的跟蹤方法[26],該方法在超像素基礎上建立目標的外觀模板,之後通過計算目標和背景的置信圖確定目標的位置,在這個過程中,該方法不斷通過分割和顏色聚類防止目標的模板漂移。
(5)基於檢測的跟蹤演算法
基於檢測的跟蹤演算法越來越流行。一般情況下,基於檢測的跟蹤演算法都採用一點學習方式產生特定目標的檢測器,即只用第一幀中人工標記的樣本信息訓練檢測器。這類演算法將跟蹤問題簡化為簡單的將背景和目標分離的分類問題,因此這類演算法的速度快且效果理想。這類演算法為了適應目標外表的變化,一般都會採用在線學習方式進行自更新,即根據自身的跟蹤結果對檢測器進行更新。

『貳』 kmean演算法是干什麼的

聚類分析是一種靜態數據分析方法,常被用於機器學習,模式識別,數據挖掘等領域。通常認為,聚類是一種無監督式的機器學習方法,它的過程是這樣的:在未知樣本類別的情況下,通過計算樣本彼此間的距離(歐式距離,馬式距離,漢明距離,餘弦距離等)來估計樣本所屬類別。從結構性來劃分,聚類方法分為自上而下和自下而上兩種方法,前者的演算法是先把所有樣本視為一類,然後不斷從這個大類中分離出小類,直到不能再分為止;後者則相反,首先所有樣本自成一類,然後不斷兩兩合並,直到最終形成幾個大類。
常用的聚類方法主要有以下四種: //照搬的wiki,比較懶...
Connectivity based clustering(如hierarchical clustering 層次聚類法)
Centroid-based clustering(如kmeans)
Distribution-based clustering
Density-based clustering
Kmeans聚類是一種自下而上的聚類方法,它的優點是簡單、速度快;缺點是聚類結果與初始中心的選擇有關系,且必須提供聚類的數目。Kmeans的第二個缺點是致命的,因為在有些時候,我們不知道樣本集將要聚成多少個類別,這種時候kmeans是不適合的,推薦使用hierarchical 或meanshift來聚類。第一個缺點可以通過多次聚類取最佳結果來解決。
Kmeans的計算過程大概表示如下
隨機選擇k個聚類中心. 最終的類別個數<= k
計算每個樣本到各個中心的距離
每個樣本聚類到離它最近的中心
重新計算每個新類的中心
重復以上步驟直到滿足收斂要求。(通常就是中心點不再改變或滿足一定迭代次數).

『叄』 圖像分割演算法那麼多 如何正確的使用適合的演算法

從學術角度講圖像分割主要分成3大類,一是基於邊緣的,二是基於區域的,三是基於紋理的。由於基於紋理的也可以看成是基於區域的,所以有些專家也把分割方法分成基於邊緣和基於區域兩大類。
選擇演算法的時候主要參考你要分割的圖像樣本的特點。
如果圖像的邊界特別分明,比如綠葉和紅花,在邊界處紅綠明顯不同,可以精確提取到邊界,這時候用基於邊緣的方法就可行。但如果是像醫學圖像一樣,輪廓不是特別明顯,比如心臟圖像,左心房和左心室顏色比較接近,它們之間的隔膜僅僅是顏色比它們深一些,但是色彩上來說很接近,這時候用基於邊緣的方法就不合適了,用基於區域的方法更好。再比如帶紋理的圖像,例如條紋衫,如果用基於邊緣的方法很可能就把每一條紋都分割成一個物體,但實際上衣服是一個整體,這時候用基於紋理的方法就能把紋理相同或相似的區域分成一個整體。
不過總體來說,基於區域的方法近些年更熱一些,如Meanshift分割方法、測地線活動輪廓模型、JSEG等。

閱讀全文

與類似meanshift的演算法相關的資料

熱點內容
在哪裡可以找到舊版本的app 瀏覽:373
一個客戶端如何連接多個伺服器 瀏覽:881
簡訊加密的作用 瀏覽:106
微型高壓空氣壓縮機 瀏覽:518
微信app如何翻譯視頻 瀏覽:858
考試前聽什麼歌解壓 瀏覽:473
哪個app充值可以用銀聯二維碼 瀏覽:563
女程序員和孩子玩 瀏覽:837
程序員蘇州武漢 瀏覽:754
大腳插件如何切換安卓 瀏覽:941
python課設製作年歷 瀏覽:405
明文在pdf 瀏覽:750
鄭永令pdf 瀏覽:122
cad命令行坐標輸入 瀏覽:781
編譯原理csdn博客 瀏覽:194
想在深圳買房關注哪個app 瀏覽:913
國際體驗服為什麼伺服器載入失敗 瀏覽:690
php介面用處 瀏覽:394
想推廣app去哪裡找 瀏覽:258
phpcmysql 瀏覽:123