導航:首頁 > 源碼編譯 > dea加密演算法

dea加密演算法

發布時間:2024-11-03 06:16:14

加密技術06-加密總結

對稱密碼是一種用相同的密鑰進行加密和解密的技術,用於確保消息的機密性。在對稱密碼的演算法方面,目前主要使用的是 AES。盡管對稱密碼能夠確保消息的機密性,但需要解決將解密密鑰配送給接受者的密鑰配送問題。

主要演算法

DES

數據加密標准(英語:Data Encryption Standard,縮寫為 DES)是一種對稱密鑰加密塊密碼演算法,1976年被美國聯邦政府的國家標准局確定為聯邦資料處理標准(FIPS),隨後在國際上廣泛流傳開來。它基於使用56位密鑰的對稱演算法。

DES現在已經不是一種安全的加密方法,主要因為它使用的56位密鑰過短。

原理請參考: 加密技術01-對稱加密-DES原理

3DES

三重數據加密演算法(英語:Triple Data Encryption Algorithm,縮寫為TDEA,Triple DEA),或稱3DES(Triple DES),是一種對稱密鑰加密塊密碼,相當於是對每個數據塊應用三次DES演算法。由於計算機運算能力的增強,原版DES由於密鑰長度過低容易被暴力破解;3DES即是設計用來提供一種相對簡單的方法,即通過增加DES的密鑰長度來避免類似的攻擊,而不是設計一種全新的塊密碼演算法。

注意:有3個獨立密鑰的3DES的密鑰安全性為168位,但由於中途相遇攻擊(知道明文和密文),它的有效安全性僅為112位。

3DES使用「密鑰包」,其包含3個DES密鑰,K1,K2和K3,均為56位(除去奇偶校驗位)。

密文 = E k3 (D k2 (E k1 (明文)))

而解密則為其反過程:

明文 = D k3 (E k2 (D k1 (密文)))

AES

AES 全稱 Advanced Encryption Standard(高級加密標准)。它的出現主要是為了取代 DES 加密演算法的,因為 DES 演算法的密鑰長度是 56 位,因此演算法的理論安全強度是 56 位。於是 1997 年 1 月 2 號,美國國家標准技術研究所宣布希望徵集高級加密標准,用以取代 DES。AES 也得到了全世界很多密碼工作者的響應,先後有很多人提交了自己設計的演算法。最終有5個候選演算法進入最後一輪:Rijndael,Serpent,Twofish,RC6 和 MARS。最終經過安全性分析、軟硬體性能評估等嚴格的步驟,Rijndael 演算法獲勝。

AES 密碼與分組密碼 Rijndael 基本上完全一致,Rijndael 分組大小和密鑰大小都可以為 128 位、192 位和 256 位。然而 AES 只要求分組大小為 128 位,因此只有分組長度為 128 位的 Rijndael 才稱為 AES 演算法。

本文 AES 默認是分組長度為 128 位的 Rijndael 演算法

原理請參考: 加密技術02-對稱加密-AES原理

演算法對比

公鑰密碼是一種用不同的密鑰進行加密和解密的技術,和對稱密碼一樣用於確保消息的機密性。使用最廣泛的一種公鑰密碼演算法是 RAS。和對稱密碼相比,公鑰密碼的速度非常慢,因此一般都會和對稱密碼一起組成混合密碼系統來使用。公鑰密碼能夠解決對稱密碼中的密鑰交換問題,但存在通過中間人攻擊被偽裝的風險,因此需要對帶有數字簽名的公鑰進行認證。

公鑰密碼學的概念是為了解決對稱密碼學中最困難的兩個問題而提出

應用場景

幾個誤解

主要演算法

Diffie–Hellman 密鑰交換

迪菲-赫爾曼密鑰交換(英語:Diffie–Hellman key exchange,縮寫為D-H) 是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道創建起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。公鑰交換的概念最早由瑞夫·墨克(Ralph C. Merkle)提出,而這個密鑰交換方法,由惠特菲爾德·迪菲(Bailey Whitfield Diffie)和馬丁·赫爾曼(Martin Edward Hellman)在1976年發表,也是在公開文獻中發布的第一個非對稱方案。

Diffie–Hellman 演算法的有效性是建立在計算離散對數很困難的基礎上。簡單地說,我們可如下定義離散對數。首先定義素數 p 的本原跟。素數 p 的本原根是一個整數,且其冪可以產生 1 到 p-1 之間所有整數,也就是說若 a 是素數 p 的本原根,則

a mod p, a 2 mod p,..., a p-1 mod p 各不相同,它是整數 1 到 p-1 的一個置換。

對任意整數 b 和素數 p 的本原跟 a,我們可以找到唯一的指數 i 使得

b ≡ a i (mod p) 其中 0 <= i <= p-1

其中 a, b, p 這些是公開的,i 是私有的,破解難度就是計算 i 的難度。

Elgamal

1985年,T.Elgamal 提出了一種基於離散對數的公開密鑰體制,一種與 Diffie-Hellman 密鑰分配體制密切相關。Elgamal 密碼體系應用於一些技術標准中,如數字簽名標准(DSS) 和 S/MIME 電子郵件標准。

基本原理就是利用 Diffie–Hellman 進行密鑰交換,假設交換的密鑰為 K,然後用 K 對要發送的消息 M,進行加密處理。

所以 Elgamal 的安全系數取決於 Diffie–Hellman 密鑰交換。

另外 Elgamal 加密後消息發送的長度會增加一倍。

RSA

MIT 的羅納德·李維斯特(Ron Rivest)、阿迪·薩莫爾(Adi Shamir)和倫納德·阿德曼(Leonard Adleman)在 1977 年提出並於 1978 年首次發表的演算法。RSA 是最早滿足要求的公鑰演算法之一,自誕生日起就成為被廣泛接受且被實現的通用的公鑰加密方法。

RSA 演算法的有效性主要依據是大數因式分解是很困難的。

原理請參考: 加密技術03-非對稱加密-RSA原理

ECC

大多數使用公鑰密碼學進行加密和數字簽名的產品和標准都使用 RSA 演算法。我們知道,為了保證 RSA 使用的安全性,最近這些年來密鑰的位數一直在增加,這對使用 RSA 的應用是很重的負擔,對進行大量安全交易的電子商務更是如此。近來,出現的一種具有強大競爭力的橢圓曲線密碼學(ECC)對 RSA 提出了挑戰。在標准化過程中,如關於公鑰密碼學的 IEEE P1363 標准中,人們也已考慮了 ECC。

與 RSA 相比,ECC 的主要誘人之處在於,它可以使用比 RSA 短得多的密鑰得到相同安全性,因此可以減少處理負荷。

ECC 比 RSA 或 Diffie-Hellman 原理復雜很多,本文就不多闡述了。

演算法對比

公鑰密碼體制的應用

密碼分析所需計算量( NIST SP-800-57 )

註:L=公鑰的大小,N=私鑰的大小

散列函數是一種將長消息轉換為短散列值的技術,用於確保消息的完整性。在散列演算法方面,SHA-1 曾被廣泛使用,但由於人們已經發現了一些針對該演算法理論上可行的攻擊方式,因此該演算法不應再被用於新的用途。今後我們應該主要使用的演算法包括目前已經在廣泛使用的 SHA-2,以及具有全新結構的 SHA-3 演算法。散列函數可以單獨使用,也可以作為消息認證、數字簽名以及偽隨機數生成器等技術的組成元素來使用。

主要應用

主要演算法

MD5

MD5消息摘要演算法(英語:MD5 Message-Digest Algorithm),一種被廣泛使用的密碼散列函數,可以產生出一個 128 位( 16 位元組,被表示為 32 位十六進制數字)的散列值(hash value),用於確保信息傳輸完整一致。MD5 由美國密碼學家羅納德·李維斯特(Ronald Linn Rivest)設計,於 1992 年公開,用以取代 MD4 演算法。這套演算法的程序在 RFC 1321 中被加以規范。

2009年,中國科學院的謝濤和馮登國僅用了 2 20.96 的碰撞演算法復雜度,破解了MD5的碰撞抵抗,該攻擊在普通計算機上運行只需要數秒鍾。2011年,RFC 6151 禁止MD5用作密鑰散列消息認證碼。

原理請參考: 加密技術04-哈希演算法-MD5原理

SHA-1

SHA-1(英語:Secure Hash Algorithm 1,中文名:安全散列演算法1)是一種密碼散列函數,美國國家安全局設計,並由美國國家標准技術研究所(NIST)發布為聯邦資料處理標准(FIPS)。SHA-1可以生成一個被稱為消息摘要的160位(20位元組)散列值,散列值通常的呈現形式為40個十六進制數。

2005年,密碼分析人員發現了對SHA-1的有效攻擊方法,這表明該演算法可能不夠安全,不能繼續使用,自2010年以來,許多組織建議用SHA-2或SHA-3來替換SHA-1。Microsoft、Google以及Mozilla都宣布,它們旗下的瀏覽器將在2017年停止接受使用SHA-1演算法簽名的SSL證書。

2017年2月23日,CWI Amsterdam與Google宣布了一個成功的SHA-1碰撞攻擊,發布了兩份內容不同但SHA-1散列值相同的PDF文件作為概念證明。

2020年,針對SHA-1的選擇前綴沖突攻擊已經實際可行。建議盡可能用SHA-2或SHA-3取代SHA-1。

原理請參考: 加密技術05-哈希演算法-SHA系列原理

SHA-2

SHA-2,名稱來自於安全散列演算法2(英語:Secure Hash Algorithm 2)的縮寫,一種密碼散列函數演算法標准,由美國國家安全局研發,由美國國家標准與技術研究院(NIST)在2001年發布。屬於SHA演算法之一,是SHA-1的後繼者。其下又可再分為六個不同的演算法標准,包括了:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。

SHA-2 系列的演算法主要思路和 SHA-1 基本一致

原理請參考: 加密技術05-哈希演算法-SHA系列原理

SHA-3

SHA-3 第三代安全散列演算法(Secure Hash Algorithm 3),之前名為 Keccak 演算法。

Keccak 是一個加密散列演算法,由 Guido Bertoni,Joan Daemen,Michaël Peeters,以及 Gilles Van Assche 在 RadioGatún 上設計。

2012年10月2日,Keccak 被選為 NIST 散列函數競賽的勝利者。SHA-2 目前沒有出現明顯的弱點。由於對 MD5、SHA-0 和 SHA-1 出現成功的破解,NIST 感覺需要一個與之前演算法不同的,可替換的加密散列演算法,也就是現在的 SHA-3。

SHA-3 在2015年8月5日由 NIST 通過 FIPS 202 正式發表。

原理請參考: 加密技術05-哈希演算法-SHA系列原理

演算法對比

❷ 對稱加密演算法有哪些

常用的對稱加密演算法有DES、3DES、IDEA。

1、DES

DES是美國國家標准和技術局(NIST)在1977年才有的數據加密標准,DES的思路就是參照二戰時期盟軍繳獲的德軍恩格瑪加密機,當然更為復雜和嚴謹,文件編號為FIPS PUB46。

對稱加密要求

(1)需要強大的加密演算法。演算法至少應該滿足:即使分析人員知道了演算法並能訪問一些或者更多的密文,也不能譯出密文或得出密匙。通常,這個要求以更強硬的形式表達出來,那就是:即使分析人員擁有一些密文和生成密文的明文,也不能譯出密文或者發現密鑰。即,加密演算法應足以抵抗已知明文類型的破譯。

(2)發送方和接收方必須用安全的方式來獲得保密密鑰的副本,必須保證密鑰的安全。如果有人發現了密匙,並知道了演算法,則使用此密匙的所有通信便都是可讀取的。

以上內容參考網路-對稱密鑰加密

❸ 對稱加密演算法中,des演算法的密鑰長度是多少,採用什麼進行加密

DES使用56位密鑰對64位的數據塊進行加密,並對64位的數據塊進行16輪編碼。與每輪編碼時,一個48位的「每輪」密鑰值由56位的完整密鑰得出來。DES用軟體進行解碼需要用很長時間,而用硬體解碼速度非常快,但幸運的是當時大多數黑客並沒有足夠的設備製造出這種硬體設備。在1977年,人們估計要耗資兩千萬美元才能建成一個專門計算機用於DES的解密,而且需要12個小時的破解才能得到結果。所以,當時DES被認為是一種十分強壯的加密方法。
但是,當今的計算機速度越來越快了,製造一台這樣特殊的機器的花費已經降到了十萬美元左右,所以用它來保護十億美元的銀行間線纜時,就會仔細考慮了。另一個方面,如果只用它來保護一台伺服器,那麼DES確實是一種好的辦法,因為黑客絕不會僅僅為入侵一個伺服器而花那麼多的錢破解DES密文。由於現在已經能用二十萬美圓製造一台破譯DES的特殊的計算機,所以現在再對要求「強壯」加密的場合已經不再適用了。
三重DES
因為確定一種新的加密法是否真的安全是極為困難的,而且DES的唯一密碼學缺點,就是密鑰長度相對比較短,所以人們並沒有放棄使用DES,而是想出了一個解決其長度問題的方法,即採用三重DES。這種方法用兩個密鑰對明文進行三次加密,假設兩個密鑰是K1和K2,其演算法的步驟如圖5.9所示:
1. 用密鑰K1進行DEA加密。
2. 用K2對步驟1的結果進行DES解密。
3. 用步驟2的結果使用密鑰K1進行DES加密。
這種方法的缺點,是要花費原來三倍時間,從另一方面來看,三重DES的112位密鑰長度是很「強壯」的加密方式了


❹ 什麼是DEA演算法

DEA演算法,全稱為Data Encryption Algorithm,是一種廣泛應用的對稱加密技術,尤其在金融數據保護中扮演重要角色。最初的DEA設計被嵌入在硬體中,比如常見的ATM機就採用這種演算法。DEA由IBM開發並擁有專利,直到1983年專利到期後進入公有領域,允許在特定條件下無須支付專利使用費。1977年,美國政府正式採納了DEA。

DES(Data Encryption Standard),是DEA的一種變體,它的設計理念源自二戰時期的恩格瑪機,使用了擴散和混淆的原理。DES加密過程採用了一個56位的密鑰和額外的8位奇偶校驗位,能生成64位的分組進行加密。DES是迭代分組密碼,通過Feistel網路結構進行操作,包括子密鑰應用、異或、置換和移位等基本運算,共進行16個循環,最終形成加密輸出。

DEA的基本原理是,它接受三個參數:密鑰key、需要加密或解密的數據data以及工作模式。在加密模式下,使用密鑰對數據進行64位分組處理;而在解密模式下,同樣使用密鑰但進行相反的操作。值得注意的是,實際應用中,僅使用了56位密鑰,以提升安全性。密鑰的獲取通常來自於用戶提供的64位密碼,通過特定方式去除奇偶校驗位,其餘的56位被用作有效的加密密鑰。

❺ DES演算法的原理

數據加密演算法
數據加密演算法DES
數據加密演算法(Data Encryption Algorithm,DEA)的數據加密標准(Data Encryption Standard,DES)是規范的描述,它出自 IBM 的研究工作,並在 1997 年被美國政府正式採納。它很可能是使用最廣泛的秘鑰系統,特別是在保護金融數據的安全中,最初開發的 DES 是嵌入硬 件中的。通常,自動取款機(Automated Teller Machine,ATM)都使用 DES。
DES 使用一個 56 位的密鑰以及附加的 8 位奇偶校驗位,產生最大 64 位的分組大小。這是一個迭代的分組密碼,使用稱為 Feistel 的技術,其中將加密的文本塊分成兩半。使用子密鑰對其中一半應用循環功能,然後將輸出與另一半進行「異或」運算;接著交換這兩半,這一過程會繼續下去,但最後一個循環不交換。DES 使用 16 個循環。
攻擊 DES 的主要形式被稱為蠻力的或徹底密鑰搜索,即重復嘗試各種密鑰直到有一個符合為止。如果 DES 使用 56 位的密鑰,則可能的密鑰數量是 2 的 56 次方個。隨著計算機系統能力的不斷發展,DES 的安全性比它剛出現時會弱得多,然而從非關鍵性質的實際出發,仍可以認為它是足夠的。不過 ,DES 現在僅用於舊系統的鑒定,而更多地選擇新的加密標准 — 高級加密標准(Advanced Encryption Standard,AES)。
DES 的常見變體是三重 DES,使用 168 位的密鑰對資料進行三次加密的一種機制;它通常(但非始終)提供極其強大的安全性。如果三個 56 位的子元素都相同,則三重 DES 向後兼容 DES。
IBM 曾對 DES 擁有幾年的專利權,但是在 1983 年已到期,並且處於公有范圍中,允許在特定條件下可以免除專利使用費而使用。

具體演算法PPT:http://www.stumbleuponyang.org/2007/03/desrsa.html

閱讀全文

與dea加密演算法相關的資料

熱點內容
有什麼測身高的app安卓 瀏覽:364
通過買東西來解壓 瀏覽:338
游戲運行文件解壓到哪個盤 瀏覽:119
銀行業務程序員要注意什麼 瀏覽:390
怎麼看壓縮機牌子的 瀏覽:900
安卓手機怎麼設置網址黑名 瀏覽:311
女超人全在哪個App可以看 瀏覽:393
可樂優品app圖標長什麼樣子 瀏覽:870
iphone米家app怎麼掃碼 瀏覽:575
servqual具體演算法 瀏覽:287
怎麼在app關閉閃付 瀏覽:456
一個壓縮文件能解壓多久 瀏覽:573
如何在光遇中知道自己被拉黑安卓 瀏覽:664
c跨平台開發技術指南pdf 瀏覽:546
演算法分析師就業人數圖 瀏覽:820
安卓手機相冊為什麼看不到照片 瀏覽:328
linux如何更新python版本 瀏覽:359
pdf文件打馬賽克 瀏覽:60
模板提高編譯速度 瀏覽:146
ppt硬核訓練營解壓密碼 瀏覽:584