導航:首頁 > 源碼編譯 > rmedf調度演算法

rmedf調度演算法

發布時間:2024-12-13 01:01:11

㈠ 什麼rm調度演算法

一個任務的響應時間(response time)是指一個任務請求, 這個任務實際完成的時間跨度. 在靜態調度中, 任務的臨界時刻(critical instant)這個概念被首先提出來. 它被定義為一個特定的時刻, 如果在這個時刻有這個任務的請求, 那麼這個任務就會需要最大的響應時間. 由此得出 定理1: 一個任務的臨界時間就是比這個任務優先順序高的所有任務同時發出請求的時刻. 定理1的價值在於它找到了一個證明一個調度演算法能否調度任一任務集充分必要條件, 那就是所有任務同時請求執行的時的情況下每個任務仍能滿足各自的期限, 那麼這個任務集就可以被這個調度演算法調度. 有了這個推論, 我們就可以證明RM調度的最優性了. 定理2: 如果一個任務集能夠被靜態調度, 那麼RMS演算法就能夠調度這個任務集. 從這個意義上說, RMS是最優的靜態調度演算法. 這個定理的證明方法就是有名的交換法. 證明思路如下: 假設一個任務集S採用其他靜態優先順序演算法可以調度,那麼總有這樣兩個優先順序相鄰的任務i和j, 有Ti>Tj,而Pi≤Pj.把Ti和Tj的優先順序Pi和Pj互換,明顯可以看出這時S仍然可以調度, 因為在所有任務同時請求的情況下, 交換這兩個任務不會影響其它任務的完成時間, 同時這兩個任務都可以在各自期限內完成. 按照這樣的方法,其他任何靜態優先順序調度最終都可以轉換成RM調度. RMS已被證明是靜態最優調度演算法, 開銷小, 靈活性好, 是實時調度的基礎性理論。即使系統瞬時過載, 也完全可預測哪些任務丟失時限。缺點是處理機利用率較低, 最壞的情況下,當n→∞時, 不超過ln2 (≈ 70%)。另外, RMS是充分但非必要條件。而在一般情況下,對於隨機的任務集大約只有88%. 70%或者88%的處理器利用率對於許多實時應用來說是一個嚴重的限制,動態調度演算法如最早截止期最先(earliest deadline first,EDF)或者最少空閑時間最先(least laxity first,LLF)已經被證明是最優的,並且能夠實現100% 的處理器利用率. 具有資源同步約束的RMS調度 當實時任務間共享資源時, 可能出現低優先順序任務不可預測地阻塞高優先順序任務執行的情況, 叫優先順序倒置。這時RMS 演算法不能保證任務集的調度, 必須使用有關協議控制優先順序的倒置時間。常用的協議有優先順序頂級協議和堆資源協議, 使用這些協議可使優先順序的倒置時間最多為一個資源臨界段的執行時間, 並且不會發生死鎖。 基於RMS 的非周期任務的調度 實時系統中的非周期任務可採用延遲伺服器演算法或隨機伺服器演算法進行調度。它們的最大特點是可在周期任務的實時調度環境下處理隨機請求。兩者的基本思想是將非周期任務轉化成周期任務, 再利用RMS演算法進行調度。前者用一個或幾個專用的周期任務執行所有非周期任務, 這種周期任務叫非周期任務伺服器。根據周期大小,伺服器有固定優先順序, 伺服器的執行時間被稱為預算, 它在每個伺服器周期Ts 的起點補充。只要伺服器有充足的預算, 就可在其周期內為非周期任務服務。該演算法實現簡單, 但可調度性分析較難, 有時會出現抖動, 可能發生一個非周期任務在相鄰兩個伺服器周期中連續執行2倍預算的現象, 與RMS理論不符, 需要適當修改RMS演算法。隨機伺服器演算法與延遲伺服器演算法相似, 但預算不是在每個周期起點補充, 而是在預算消耗Ts時間之後再補充。該演算法與RMS分析演算法一致, 但實現復雜。 EDF最早截止時間優先演算法(EDF)也稱為截止時間驅動調度演算法(DDS),是一種動態調度演算法。EDF指在調度時,任務的優先順序更具任務的截止時間動態分配。截止時間越短,優先順序越高。EDF有如下定理: 定理2:如果一個任務集按EDF演算法調度,當且僅當U<=1。 EDF的特點(1) 任務模型: 與RMS 調度相同。 (2) 優先順序分配方法: 動態分配, 距要求時限所剩時間越短優先順序越高。 理論上,EDF和LLF演算法都是單處理器下的最優調度演算法。但是由於EDF和LLF在每個調度時刻都要計算任務的deadline或者空閑時間,並根據計算結果改變任務優先順序,因此開銷大、不易實現,其應用受到一定限制。多處理器實時調度

㈡ 進程調度的實時系統

最簡單最直觀的進程調度策略是基於優先順序的調度,多數實時系統採用基於優先順序的調度,每個進程根據它重要程度的不同被賦予不同的優先順序,調度器在每次調度時,總選擇優先順序最高的進程開始執行.
首先要考慮的問題是如何分配優先順序,對於進程優先順序的分配可以採用靜態和動態兩種方式,靜態優先順序調度演算法:這種調度演算法給那些系統中得到運行的所有進程都靜態地分配一個優先順序.靜態優先順序的分配可以根據應用的屬性來進行,比如進程的周期,用戶優先順序,或者其它的預先確定的策略.單調率演算法(RM)調度演算法是一種典型的靜態優先順序調度演算法,它根據進程的執行周期的長短來決定調度優先順序,那些具有小的執行周期的進程具有較高的優先順序.動態優先順序調度演算法:這種調度演算法根據進程的資源需求來動態地分配進程的優先順序,其目的就是在資源分配和調度時有更大的靈活性.在實時系統中,最早期限優先演算法(EDF)演算法是使用最多的一種動態優先順序調度演算法,該演算法給就緒隊列中的各個進程根據它們的截止期限(Deadline)來分配優先順序,具有最近的截止期限的進程具有最高的優先順序.
分配好優先順序之後下一個要考慮的問題是何時讓高優先順序進程掌握CPU的使用權,這取決於操作系統的內核,有不可搶占式和可搶占式兩種.
不可搶占式內核要求每個進程自我放棄CPU的所有權,各個進程彼此合作共享一個CPU.非同步事件還是由中斷服務來處理.中斷服務可以使一個高優先順序的進程由掛起狀態變為就緒狀態.但中斷服務以後控制權還是回到原來被中斷了的那個進程,直到該進程主動放棄CPU的使用權時,那個高優先順序的進程才能獲得CPU的使用權.這就出現了響應時間的問題,高優先順序的進程已經進入了就緒狀態但不能執行,這樣進程的響應時間變得不再確定這與實時系統的要求不符,因此一般的實時操作系統都要求是可搶占式的內核,當一個運行著的進程使一個比它優先順序高的進程進入了就緒態,當前進程的CPU使用權就被剝奪了,或者說被掛起了,那個高優先順序的進程立刻得到了CPU的控制權,如果是中斷服務子程序使一個高優先順序的進程進入就緒態,中斷完成時,中斷了的進程被掛起,優先順序高的那個進程開始運行.在這種內核設置下,多個進程可能處於並發的狀態,這就出現了多個進程共享資源的情況,因此我們需要設置信號量來保證臨界資源的正確使用,任何一個想使用臨界資源的進程在進入臨界區之前必須擁有使用臨界資源的信號量,否則不可以執行臨界區代碼.
這樣基於優先順序的可搶占式進程調度策略就基本架構完成,但此時仍然有系統崩潰的危險,假設系統中有3個進程,分別為p1,p2和p3. p1的優先權高於p2,而p2的優先權高於p3.恰在此時p1和p2 因某種原因被阻塞,這時候系統調度p3執行.p3執行一段時間後,p1被喚醒.由於採取的是PBP的調度策略,因此p1搶占 p3的CPU, p1執行.p1執行一段時間後要進入臨界區,但此時p3佔有此臨界資源的信號量.因此p1被阻塞,處於等待狀態,等待p3 釋放此信號量.經過這么一段時間後,p2此時此刻處於就緒狀態.因此系統調度p2執行.如果p3在p2的執行期間一直沒有能夠被調度執行的話,那p1和p3將一直等到p2執行完後才能執行,p1更要等到p3釋放它所把持的信號量才能執行;而這段時間完全有可能超出p1的Deadline,使得p1崩潰.我們看到在這個過程中,由於臨界資源的使用問題使得優先順序低的進程先於優先順序高的進程先執行,這就出現了優先順序反轉的問題,從而造成了系統崩潰,對於這個問題可以採用優先順序繼承的辦法來進行解決.在優先順序繼承方案中,當高優先順序進程在等待低優先順序的進程佔有的信號量時,讓低優先順序進程繼承高優先順序進程的優先順序,即把低優先順序進程的優先權提高到高優先順序進程的優先順序;當低優先順序進程釋放高優先順序進程等待的信號量時,立即把其優先權降低到原來的優先權.採用這種方法可以有效地解決上面所述的優先權反轉的問題.當高優先順序進程p1想要進入臨界區時,由於低優先順序進程p3佔有這個臨界資源的信號量,導致p1被阻塞.這時候,系統把p3的優先權升到p1的優先權,此時優先權處於p1和p3之間的進程p2,即使處於就緒狀態也不可以被調度執行,因為此時p3的優先權已經高於p2,所以p3此時被調度執行.當p3釋放p1需要的信號量時,系統立即把p3的優先權降到原來的高度,來保證p1和p2正常有序執行,有許多實時系統是採用這種方法來防止優先順序反轉的,如VXWORKS. 對於那些具有穩定,已知輸入的簡單系統,可以使用時間驅動的調度演算法,它能夠為數據處理提供很好的預測性.這種調度演算法本質上是一種設計時就確定下來的離線的靜態調度方法.在系統的設計階段,在明確系統中所有的處理情況下,對於各個進程的開始,切換,以及結束時間等就事先做出明確的安排和設計.這種調度演算法適合於那些很小的嵌入式系統,自控系統,感測器等應用環境.這種調度演算法的優點是進程的執行有很好的可預測性,但最大的缺點是缺乏靈活性,並且會出現有進程需要被執行而 CPU 卻保持空閑的情況.
對於不同要求下的實時系統可以採用不同的進程調度策略來進行設計,也可以將這些方法進行綜合之後得到更適合的調度策略.

linux調度演算法的核心思想是什麼

第一部分:實時調度演算法

什麼是實時系統,POSIX 1003.b作了這樣的定義:是指系統可以在有限響應時間內提供所需的服務級別。較可取被定義為由Donald喬利士的的:一個實時系統的程序的邏輯正確性不僅取決於計算的准確度,而且還對結果,如果系統時間的限制不能滿足將是一個系統錯誤發生。

基於實時系統的實時性要求的不同,可分為軟實時和硬實時兩種。硬實時系統是指系統必須確保,在最壞情況下的服務時間,截止日期為事件的響應時間是在任何情況下,必須滿足。如航天飛船的控制是這樣一個系統的現實。所有其他實時系統的特點,可以稱為軟實時系統。如果清除,軟實時系統是那些從統計學的角度來看,一個任務(在下面的討論中,我們將有任務和過程不作出區分),以確保系統的處理時間,可以得到事件可以處理的最後期限到來之前,違反的最後期限,並不會帶來一個致命的錯誤,如實時多媒體系統是一種軟實時系統。

一台電腦系統的CPU和其他資源進行有效的調度和管理,以提供實時操作系統的支持。的多任務的實時系統中,資源的調度和管理更復雜的。下面討論本文將從各種實時任務調度演算法的分類的角度來看,普通的Linux操作系統進程調度和各種實時Linux系統,然後研究,以支持實時特點,普通的Linux系統的改進。實時領域的一些問題,並總結了各種實時Linux的Linux操作系統,歸根到底是如何解決這些問題。

CPU的實時調度演算法的分類

多種實時操作系統的實時調度演算法可以分為以下三類Wang99] [Gopalan01]:基於優先順序調度演算法(優先順序驅動調度PD),基於在共享的CPU使用率調度演算法(分享驅動調度SD)的比例,以及基於時間的進程調度演算法(時間驅動調度TD),下面這三種調度演算法逐一介紹。

1.1

/>基於優先順序的調度演算法,基於優先順序的調度演算法,每個進程被分配一個優先順序,每次的進程調度程序,調度程序總是具有最高的調度優先順序的任務執行。根據不同的優先順序分配方法,基於優先順序的調度演算法可以分為以下兩種類型的Krishna01] [Wang99]:靜態優先順序調度演算法

該演算法得到這些系統中運行的所有進程都靜態分配一個優先順序。靜態優先順序分配的屬性的應用程序,如任務循環中的用戶優先順序,或其他預先確定的政策。 RM(速率單調)的調度演算法是一個典型的靜態優先順序的調度演算法,根據執行的任務的調度優先順序的周期的長度確定,那些具有小的執行周期的任務的優先順序較高。

動態優先順序調度演算法:

該演算法基於任務的資源需求動態地分配任務的優先順序,資源分配和調度的目的更大的靈活性。非實時系統,這種演算法有很多,如短作業優先順序調度演算法。任務的實時調度演算法,EDF演算法是使用最廣泛的動態優先順序調度演算法,該演算法根據他們的截止日期(截止日期)分配優先順序的就緒隊列中的每個任務,最近期限具有最高的優先順序。

1.2

基於優先順序調度演算法的調度演算法是簡單而有效的,但這種演算法的基礎上按比例份額是一個硬實時調度,許多的情況下,不適合使用此演算法:例如,軟實時應用,如實時多媒體會議系統。對於軟實時應用程序,共享資源調度演算法(SD演算法)的比例使用是更合適的。

比例共享調度演算法是指對CPU使用率的比例共享調度演算法,其基本思路是按照一定的權重(比率),需要一組調度安排任務,以使它們的權重成比例的執行時間。

要實現比例共享調度演算法[Nieh01]有兩種方法:第一種方法是調整的准備過程中出現的調度隊列隊第一頻率,並安排一線隊的過程中,執行第二種方法是連續調度進程就緒隊列中投產,但根據調整分配一個進程的運行時間片分配的權重。

比例共享調度演算法可以分為以下類別:循環賽,公平份額,公平排隊,的彩票調度方法,(彩票)。

比例共享調度演算法的一個問題是,它並沒有定義任何優先的概念,所有的任務都根據其應用的CPU資源的比例共享系統過載時,執行的所有任務將較慢比例。因此,為了確保該系統的實時過程中獲得一定量的CPU處理時間,一般採用的是動態權重的調整過程。

1.3。基於時間進程調度演算法的調度演算法

對於那些具有穩定,簡單的系統已知輸入,您可以使用時間驅動(驅動時間時間:TD)數據處理,它可以提供一個良好的預測。這種調度演算法本質上是一個設計定型的離線靜態調度方法。在系統的設計階段,所有處理的情況下,在明確的制度,每個任務切換的開始和結束的時間提前做出了明確的安排和設計。該演算法是適用於小型嵌入式系統,自動化控制系統,感測器和其他應用環境。

該演算法的優勢是良好的可預測性任務的執行,但最大的缺點是缺乏靈活性,而且會有一個任務需要執行,而CPU保持空閑。

一般的Linux系統CPU調度

一般的Linux系統支持實時和非實時兩種進程,實時進程與普通進程方面具有絕對的優先權。相應地,實時進程調度策略SCHED_FIFO或SCHED_RR,普通進程SCHED_OTHER調度策略。

每個任務調度演算法的實現在Linux四種調度參數,它們是rt_priority優先政策(尼斯),計數器。調度進程調度的基礎上,這四個參數。

SCHED_OTHER調度策略,調度程序總是會選擇優先順序+計數器的值進程調度的執行。從邏輯分析存在SCHED_OTHER調度策略調度處理來執行,其特徵在於,所述優先順序是一個固定的調度周期(歷元),在每個調度周期內的過程中的優先順序,計數器的值的大小的影響這一刻已經確定變數值的過程中被創建時,它代表了進程的優先順序,也代表數量的時間片,通過該方法可以得到在每個調度周期內,計數器是一個動態值,它反映了當前調度周期的過程中,剩餘的時間片。在每個調度周期的開始,分配給優先順序值計數器,那麼每一次進程被調度運行計數器的值?減少。當計數器的值是零,這個過程已經運行的時間片調度期內,不再參與調度周期進程調度。當所有的進程都用完了時間片調度期結束,然後一遍又一遍。此外,可以看出在Linux系統中的調度周期是不固定的,它的量是動態變化的,例如,在運行的進程的數目和它們的優先順序值?可以影響一個劃時代的長度。有一點值得注意的是,在2.4內核中,首要任務是不錯的替換兩個類似的作用。

按比例分擔的調度策略調度策略SCHED_OTHER可見的性質,它的這種設計方法,以確保進程調度的公平性 - 一個低優先順序進程,在每個時代也將得到他們的份額那些CPU的執行時間,此外,它也提供了不同的進程的優先順序,進程執行時間可以得到更多的具有高優先順序值。

對於實時的過程中,他們使用基於實時優先順序rt_priority的優先順序調度策略,但相同的實時優先順序的進程調度方法是根據不同的調度策略,

BR /> SCHED_FIFO:不同的進程,根據靜態優先順序排隊,然後在相同的優先順序隊列,先准備好運行的第一誰調度和運行的進程不會被終止,直到發生以下情況:1。高優先順序的進程篡奪了CPU;自己的資源請求受阻;自己主動放棄CPU(呼叫SCHED_YIELD);

SCHED_RR是這樣的:這個調度策略SCHED_FIFO與上述完全相同,除了時間片分配給每個進程,正在實施的過程中,給執行時間片,時間片的長度可以通過sched_rr_get_interval調用

由於Linux系統本身是一個桌面導向的系統,因此,它是用於在實時應用中的一些問題:/> /> Linux系統調度單位是10ms,所以它不能提供精確的定時中斷; p>當一個進程調用系統調用進入內核模式運行,它不能被搶占;

Linux內核實現大量採用了封閉中斷操作損失;

由於使用虛擬內存技術,當發生頁面錯誤時,從硬碟中讀取的數據交換的需要,但硬碟讀取和寫入的存儲位置的隨機性,將導致隨機讀取和寫入時間,這在某些情況下,會影響實時任務期限;

雖然Linux的進程調度器還支持實時優先順序,但由於缺乏有效的實時任務調度機制和調度演算法;其網路子協議處理和其它設備的中斷處理,調度伴有相應的過程和自己的有沒有明確的調度機制;

各種實時Linux系統
Home>的的

3.1 RT-Linux和RTAI

RT-Linux是新墨西哥大學的研究(新墨西哥州技術學院)[RTLinuxWeb] [Barabanov97。其基本思路是,在Linux系統上的硬實時支持,它實現了一個微內核實時操作系統(也被稱為RT-Linux的實時子系統),而普通的Linux系統作為一個低優先順序任務在操作系統中運行。在正常的Linux系統的另一個任務可以溝通,通過FIFO和實時任務。 RT-Linux的框架如圖1所示:

圖1 RT-Linux的結構

RT-Linux的關鍵技術是軟體模擬硬體中斷控制器。當Linux系統不時阻止CPU中斷,實時定量RT-Linux的子系統的請求攔截,愛不釋手,而事實上並沒有真正阻止硬體中斷,從而避免了由於中斷造成的封由系統在一段時間內沒有響應,從而在改進的實時。當傳遞給Linux內核的RT-Linux的一個硬體中斷到達截取的中斷,並確定是否有一個實時子系統中斷常式來處理或處理。此外,的最小定時的精度在正常的Linux系統是確定系統的實時時鍾的頻率,Linux的系統時鍾被設置到時鍾中斷每秒100,所以在Linux的系統定時的精度10毫秒,即時鍾周期10ms時,RT-Linux的實時時鍾設置為單觸發狀態,可以提供更多的十幾微秒調度粒度。

RT-Linux實時子系統的任務調度優先順序驅動演算法,RM,EDF等,也可用於其他調度演算法。

RT-Linux的專有系統,重型工作,的確是一個不錯的選擇,但他只提供了CPU資源的調度和實時系統和Linux系統的關系不是非常密切,因此開發人員可以充分利用已在Linux系統中,如協議棧實現的功能。 RT-Linux的工業控制等實時任務簡單和硬實時要求的環境,但大量的工作需要做,如果你想應用的多媒體處理。

義大利實時應用程序介面(RTAI)來自RT-Linux的,它是在設計和RT-Linux的思想相同。這是原來的設計中,為了解決問題,RT-Linux的不同版本的Linux之間很難很難移植,RTAI在Linux上定義的實時硬體抽象層,這個抽象層介面提供實時任務Linux系統的相互作用,這可以增加一點可以Linux內核源代碼到Linux內核的實時支持。

3.2。 KURT-Linux的

KURT-Linux的堪薩斯大學開發的,它可以提供實時微秒精度[KurtWeb] [斯里尼瓦桑]。與RT-Linux的單獨實現一個實時內核,KURT-Linux是常用的Linux系統的基礎上實現的,這也是第一個基於Linux的實時系統可以使用普通的Linux系統調用。

KURT-Linux系統分為三種狀態:正常狀態,實時狀態和混合狀態,在正常狀態下,它使用普通的Linux實時運行狀態實時調度策略任務,實時和非實時任務的混合狀態,可以執行實時狀態可以被用來為實時的要求更加嚴格。

為了提高Linux系統的實時特性,有必要提高精度的時鍾系統的支持。但是,如果只是簡單地增加時鍾頻率將導致調度負載的增加,從而嚴重降低系統的性能。為了解決這個矛盾,KURT-Linux中使用的時鍾精度的方法[UTIMEWeb]提高Linux系統UTIME,時鍾晶元設置為單次觸發狀態(單拍模式),也就是每個時鍾晶元設置超時,然後再次超時事件發生時,在時鍾中斷的處理程序所需的時鍾晶元設置一個超時。其基本思想是一個精確的時間意味著我們需要的時鍾中斷發生時,我們需要一個更精確的時間,以達到這樣的精度,但並不一定需要系統時鍾頻率。它採用了CPU時鍾計數器時間戳計數器(TSC)提供准確的CPU頻率精度的時間。

KURT-Linux的實時任務調度,使用靜態CPU的實時調度演算法,基於時間(TD)。實時任務需要實時事件發生在設計階段就必須清楚列明。該演算法可以實現更好的調度任務,對於那些誰周期。

KURT-Linux的相RT-Linux的優勢之一是,你可以使用系統調用的Linux系統,它最初是專為硬實時支持,但因為它是簡單的實現將使用一個簡單的時間驅動調度取代Linux的調度,實時進程調度的影響等非實時任務,在某些情況下會發生實時任務的截止日期是脆弱的不符合的,也被稱為嚴格的實時系統(快地實時)。基於KURT-Linux的應用程序:藝術(ATM參考交通系統),多媒體播放軟體。 KURT-Linux的另一種方法,需要頻繁的時鍾晶元編程

3.3。 RED-Linux的

RED-Linux是加州大學爾灣,實時Linux系統的發展[REDWeb] [Wang99],它將支持實時調度和Linux實現相同的操作系統內核。它支持三種類型的調度演算法,即:時間驅動優先Dirven,分享驅動。

為了提高系統的調度粒度,RED-Linux的學習RT-Linux的軟體模擬中斷的管理機制,並增加頻率的時鍾中斷。 RED-Linux的中斷模擬程序只是簡單地中斷會在隊列中排隊一個硬體中斷到來時,並沒有進行實際的中斷處理程序。

另外,為了解決Linux的內核模式的過程中不能被中斷,RED-Linux的插入Linux內核搶占點原語的眾多功能,使這一進程在內核模式下,也在一定程度上被搶占。通過這種方法提高了內核的實時特性。

RED-Linux的設計目標是提供常規調度框架可以支持多種調度演算法,系統為每個任務增加幾個屬性,進程調度的基礎上:

優先順序:作業的優先順序;

開始時間:工作的開始時間;

完成時間:工作的結束時間; BR p>預算:資源的數量在操作過程中要使用的工作;

調整值?這些屬性和調度根據什麼優先使用的這些屬性值幾乎所有的調度演算法。在這種情況下,三種不同的調度演算法無縫地一起耦合到一個統一的。

閱讀全文

與rmedf調度演算法相關的資料

熱點內容
輕松學用ado編程pdf 瀏覽:844
程序員ko產品經理 瀏覽:481
那麼多編程語言為什麼不統一起來 瀏覽:436
可樂優品app如何獲得吃雞點卷 瀏覽:740
權貴pdf 瀏覽:545
cgijava 瀏覽:680
初學者java考試編程題 瀏覽:796
織夢源碼簡潔 瀏覽:925
腰椎壓縮性骨折連續五天發熱 瀏覽:444
馬東程序員思維 瀏覽:286
指南針app有什麼隱藏功能 瀏覽:466
iptv機頂盒認證伺服器地址 瀏覽:813
中國LV9伺服器什麼時候上線 瀏覽:509
離心式壓縮機潤滑油系統 瀏覽:54
文件夾清理手機內存方法 瀏覽:458
程序員頭發冒煙是為什麼 瀏覽:763
外賣小程序源碼2021 瀏覽:530
espressopdf 瀏覽:642
尚矽谷和程序員哪個值得讀 瀏覽:921
單片機竊取代碼 瀏覽:211