『壹』 如何通過哈希函數和橢圓曲線密碼演算法實現數字簽名
RSA的安全性主要取決於構造其加密演算法的數學函數的求逆的困難性,這同大多數公鑰密碼系統一樣(例如ElGamal演算法就是基於離散對數問題的困難性,我們稱這樣的函數為單向函數.單向函數不能直接用作密碼體制,因為如果用單向函數對明文進行加密,即使是合法的接收者也不能還原出明文,因為單向函數的逆運算是困難的.與密碼體制關系更為密切的陷門單向函數,即函數及其逆函數的計算都存在有效的演算法,而且可以將計算函數的方法公開.單向和陷門單向函數的概念是公鑰密碼學的核心,它對公鑰密碼系統的構造非常重要,甚至可以說公鑰密碼體制的設計就是陷門單向函數的設計.
ECDSA演算法將DsA運用在橢圓曲線方程上,將安全性的基礎由求取有限域上
離散對數的困難性變成了在橢圓曲線群上計算離散對數的困難性,安全性基礎改
變,使得在同等安全程度下使用的密鑰長度變短,僅僅使用192位長的密鑰就可
以保證安全性了,而DSA演算法需要1024位長的密鑰才能保證足夠的安全性.改進
後的ECDSA演算法提高了演算法實現的效率.
『貳』 橢圓曲線加密演算法原理
橢圓曲線加密演算法,簡稱ECC,是基於橢圓曲線數學理論實現的一種非對稱加密毀核演算法。
相比RSA,ECC優勢是可以使用更短的密鑰,來實現與RSA相當或更高的安全,RSA加密演算法也是純擾一種非對稱加密演算法,在公開密鑰加密和電子商業中RSA被廣泛使用。據研究,160位ECC加密安全性相當於1024位RSA加密,210位ECC加密安全性相當於2048位做余旦RSA加密(有待考證)。
橢圓曲線也可以有運算,像實數的加減乘除一樣,這就需要使用到加群。19世紀挪威的尼爾斯·阿貝爾抽象出了加群(又叫阿貝爾群或交換群)。數學中的群是一個集合,我們為它定義了一個「加法」,並用符號+表示。假定群用 表示,則加法必須遵循以下四個特性:
封閉性:如果a和b都是 的成員,那麼a+b也是 的成員;
結合律:(a + b) + c = a + (b + c);
單位元:a+0=0+a=a,0就是單位元;
逆元:對於任意值a必定存在b,使得a+b=0。
如果再增加一個條件,交換律:a + b = b + a,則稱這個群為阿貝爾群,根據這個定義整數集是個阿貝爾群。
『叄』 橢圓曲線加密演算法
橢圓曲線加密演算法,即:Elliptic Curve Cryptography,簡稱ECC,是基於橢圓曲線數學理論實現的一種非對稱加密演算法。相比RSA,ECC優勢是可以使用更短的密鑰,來實現與RSA相當或更高的安全。據研究,160位ECC加密安全性相當於1024位RSA加密,210位ECC加密安全性相當於2048位RSA加密。
橢圓曲線在密碼學中的使用,是1985年由Neal Koblitz和Victor Miller分別獨立提出的。
一般情況下,橢圓曲線可用下列方程式來表示,其中a,b,c,d為系數。
例如,當a=1,b=0,c=-2,d=4時,所得到的橢圓曲線為:
該橢圓曲線E的圖像如圖X-1所示,可以看出根本就不是橢圓形。
過曲線上的兩點A、B畫一條直線,找到直線與橢圓曲線的交點,交點關於x軸對稱位置的點,定義為A+B,即為加法。如下圖所示:A + B = C
上述方法無法解釋A + A,即兩點重合的情況。因此在這種情況下,將橢圓曲線在A點的切線,與橢圓曲線的交點,交點關於x軸對稱位置的點,定義為A + A,即2A,即為二倍運算。
將A關於x軸對稱位置的點定義為-A,即橢圓曲線的正負取反運算。如下圖所示:
如果將A與-A相加,過A與-A的直線平行於y軸,可以認為直線與橢圓曲線相交於無窮遠點。
綜上,定義了A+B、2A運算,因此給定橢圓曲線的某一點G,可以求出2G、3G(即G + 2G)、4G......。即:當給定G點時,已知x,求xG點並不困難。反之,已知xG點,求x則非常困難。此即為橢圓曲線加密演算法背後的數學原理。
橢圓曲線要形成一條光滑的曲線,要求x,y取值均為實數,即實數域上的橢圓曲線。但橢圓曲線加密演算法,並非使用實數域,而是使用有限域。按數論定義,有限域GF(p)指給定某個質數p,由0、1、2......p-1共p個元素組成的整數集合中定義的加減乘除運算。
假設橢圓曲線為y² = x³ + x + 1,其在有限域GF(23)上時,寫作:y² ≡ x³ + x + 1 (mod 23)
此時,橢圓曲線不再是一條光滑曲線,而是一些不連續的點,如下圖所示。以點(1,7)為例,7² ≡ 1³ + 1 + 1 ≡ 3 (mod 23)。如此還有如下點:
(0,1) (0,22)(1,7) (1,16)(3,10) (3,13)(4,0)(5,4) (5,19)(6,4) (6,19)(7,11) (7,12)(9,7) (9,16)(11,3) (11,20)等等。
另外,如果P(x,y)為橢圓曲線上的點,則-P即(x,-y)也為橢圓曲線上的點。如點P(0,1),-P=(0,-1)=(0,22)也為橢圓曲線上的點。
相關公式如下:有限域GF(p)上的橢圓曲線y² = x³ + ax + b,若P(Xp, Yp), Q(Xq, Yq),且P≠-Q,則R(Xr,Yr) = P+Q 由如下規則確定:
Xr = (λ² - Xp - Xq) mod pYr = (λ(Xp - Xr) - Yp) mod p其中λ = (Yq - Yp)/(Xq - Xp) mod p(若P≠Q), λ = (3Xp² + a)/2Yp mod p(若P=Q)
因此,有限域GF(23)上的橢圓曲線y² ≡ x³ + x + 1 (mod 23),假設以(0,1)為G點,計算2G、3G、4G...xG等等,方法如下:
計算2G:λ = (3x0² + 1)/2x1 mod 23 = (1/2) mod 23 = 12Xr = (12² - 0 - 0) mod 23 = 6Yr = (12(0 - 6) - 1) mod 23 = 19即2G為點(6,19)
計算3G:3G = G + 2G,即(0,1) + (6,19)λ = (19 - 1)/(6 - 0) mod 23 = 3Xr = (3² - 0 - 6) mod 23 = 3Yr = (3(0 - 3) - 1) mod 23 = 13即3G為點(3, 13)
建立基於橢圓曲線的加密機制,需要找到類似RSA質因子分解或其他求離散對數這樣的難題。而橢圓曲線上的已知G和xG求x,是非常困難的,此即為橢圓曲線上的的離散對數問題。此處x即為私鑰,xG即為公鑰。
橢圓曲線加密演算法原理如下:
設私鑰、公鑰分別為k、K,即K = kG,其中G為G點。
公鑰加密:選擇隨機數r,將消息M生成密文C,該密文是一個點對,即:C = {rG, M+rK},其中K為公鑰
私鑰解密:M + rK - k(rG) = M + r(kG) - k(rG) = M其中k、K分別為私鑰、公鑰。
橢圓曲線簽名演算法,即ECDSA。設私鑰、公鑰分別為k、K,即K = kG,其中G為G點。
私鑰簽名:1、選擇隨機數r,計算點rG(x, y)。2、根據隨機數r、消息M的哈希h、私鑰k,計算s = (h + kx)/r。3、將消息M、和簽名{rG, s}發給接收方。
公鑰驗證簽名:1、接收方收到消息M、以及簽名{rG=(x,y), s}。2、根據消息求哈希h。3、使用發送方公鑰K計算:hG/s + xK/s,並與rG比較,如相等即驗簽成功。
原理如下:hG/s + xK/s = hG/s + x(kG)/s = (h+xk)G/s= r(h+xk)G / (h+kx) = rG
假設要簽名的消息是一個字元串:「Hello World!」。DSA簽名的第一個步驟是對待簽名的消息生成一個消息摘要。不同的簽名演算法使用不同的消息摘要演算法。而ECDSA256使用SHA256生成256比特的摘要。
摘要生成結束後,應用簽名演算法對摘要進行簽名:
產生一個隨機數k
利用隨機數k,計算出兩個大數r和s。將r和s拼在一起就構成了對消息摘要的簽名。
這里需要注意的是,因為隨機數k的存在,對於同一條消息,使用同一個演算法,產生的簽名是不一樣的。從函數的角度來理解,簽名函數對同樣的輸入會產生不同的輸出。因為函數內部會將隨機值混入簽名的過程。
關於驗證過程,這里不討論它的演算法細節。從宏觀上看,消息的接收方從簽名中分離出r和s,然後利用公開的密鑰信息和s計算出r。如果計算出的r和接收到的r值相同,則表示驗證成功。否則,表示驗證失敗。
『肆』 橢圓曲線加密(ECC)核心演算法的簡明介紹
網上對於橢圓曲線加密過程的介紹過於繁瑣,對於只想了解加密如何進行的人來說浪費時間,所以我這里只對關鍵計算步驟進行介紹,略去橢圓曲線的相關原理(網路一搜一大把)。
最最關鍵且基本只用到的是 Ep(a,b)的加法
對與橢圓曲線y^2 = x^3+ax+b(mod p) :
兩點P(x1,y1) Q(x2,y2),P≠-Q,則P+Q=(x3,y3)由以下演算法定義:
實際通信流程如下:
再對點M進行解碼就可以得到明文。上述流程中的加法即為Ep(a,b)的加法。
這個演算法實際是基於已知kG難解k實現的,簡單清晰。