1. 大數據培訓到底是培訓什麼
一、基礎部分:JAVA語言 和 LINUX系統
二、數據開發:
1、數據分析與挖掘
一般工作包括數據清洗,執行分析和數據可視化。學習Python、資料庫、網路爬蟲、數據分析與處理等。
大數據培訓一般是指大數據開發培訓。
大數據技術龐大復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。
2、大數據開發
數據工程師建設和優化系統。學習hadoop、spark、storm、超大集群調優、機器學習、Docker容器引擎、ElasticSearch、並發編程等;
課程學習一共分為六個階段:
7
2. 大數據專業主要學習什麼語言
大數據專業需要學習哪些技術:
一、編程語言
想要學習大數據技術,首先要掌握一門基礎編程語言。Java編程語言的使用率最廣泛,因此就業機會會更多一些,而Python編程語言正在高速推廣應用中,同時學習Python的就業方向會更多一些。
二、Linux
學習大數據一定要掌握一定的Linux技術知識,不要求技術水平達到就業的層次,但是一定要掌握Linux系統的基本操作。能夠處理在實際工作中遇到的相關問題。
三、SQL
大數據的特點就是數據量非常大,因此大數據的核心之一就是數據倉儲相關工作。因此大數據工作對於資料庫要求是非常的高。甚至很多公司單獨設置資料庫開發工程師。
四、Hadoop
Hadoop是分布式系統的基礎框架,以一種可靠、高效、可伸縮的方式進行數據處理。具有高可靠性、高擴展性、高效性、高容錯性、低成本等優點,從事大數據相關工作Hadoop是必學的知識點。
五、Spark
Spark是專門為大規模數據處理而設計的快速通用的計算引擎。可以用它來完成各種各樣的運算,包括SQL查詢、文本處理、機器學習等等。
六、機器學習
機器學習是目前人工智慧領域的核心技術,在大數據專業中也有非常廣泛的引用。在演算法和自動化的發展過程中,機器學習扮演著非常重要的角色。可以大大拓展自己的就業方向。
互聯網行業里大數據和雲智能是當下最重要板塊,企業藉助大數據技術不僅能避免企業發展時會面臨的各種風險,更能解決發展過程中所遇到的種種難題。近些年來大數據的公司越來越多,但是大數據人才需求還存在著很大缺口,為了響應市場需求未來我國還會需要更多的大數據人才。網路、阿里、京東等互聯網高企依仗自身的強大技術和數據優勢,均已將大數據作為企業的重要戰略部署。
大數據專業未來就業方向解析:
一、ETL研發
企業數據種類與來源的不斷增加,對數據進行整合與處理變得越來越困難,企業迫切需要一種有數據整合能力的人才。ETL開發者這是在此需求基礎下而誕生的一個職業崗位。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL.
二、Hadoop開發
隨著數據規模不斷增大,傳統BI的數據處理成本過高企業負擔加重。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。並成為大數據人才必須掌握的一種技術。
三、可視化工具開發
可視化開發就是在可視化工具提供的圖形用戶界面上,通過操作界面元素,有可視化開發工具自動生成相關應用軟體,輕松跨越多個資源和層次連接所有數據。過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。
四、信息架構開發
大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。
五、數據倉庫研究
為方便企業決策,出於分析性報告和決策支持的目的而創建的數據倉庫研究崗位是一種所有類型數據的戰略集合。為企業提供業務智能服務,指導業務流程改進和監視時間、成本、質量和控制。
六、OLAP開發
OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。
七、數據科學研究
數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。
八、數據預測分析
營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。
九、企業數據管理
企業要提高數據質量必須考慮進行數據管理,並需要為此設立數據管家職位,這一職位的人員需要能夠利用各種技術工具匯集企業周圍的大量數據,並將數據清洗和規范化,將數據導入數據倉庫中,成為一個可用的版本。
十、數據安全研究
數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。
大數據的特點就是能夠靈活、快速、高效的響應各種市場需求。大數據的受眾領域非常廣泛,不僅改善著人們的社會活動和生活方式,運用好大數據技術還能為企業帶了更多的商機和商業價值。大數據不僅與IT行業關系密切,眾多行業都已經開始了大數據運營的布局,例如金融、醫療、政府等。撼地大數據就是以大數據技術為基礎研發出了屬於自己的大數據數智招商系統,為產業招商打造了一個精準招商服務雲平台,極大的改善了現階段產業園招商難的窘境。
3. 什麼是大數據
大數據是指在一定時間內,常規軟體工具無法捕捉、管理和處理的數據集合。它是一種海量、高增長、多元化的信息資產,需要一種新的處理模式,以具備更強的決策、洞察和流程優化能力。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些有意義的數據進行專業的處理。換句話說,如果把大數據比作一個行業,這個行業盈利的關鍵在於提高數據的「處理能力」,通過「處理」實現數據的「增值」。
從技術上講,大數據和雲計算的關系就像硬幣的正反面一樣密不可分。大數據不能用單台計算機處理,必須採用分布式架構。其特點在於海量數據的分布式數據挖掘。但它必須依賴雲計算分布式處理、分布式資料庫、雲存儲和虛擬化技術。
擴展信息:
大數據只是現階段互聯網的一個表徵或特徵。沒有必要將其神話或保持敬畏。在以雲計算為代表的技術創新背景下,這些原本看似難以收集和使用的數據開始被輕松使用。通過各行各業的不斷創新,大數據將逐漸為人類創造更多的價值。
是體現大數據技術價值的手段,是進步的基石。這里從雲計算、分布式處理技術、存儲技術、感知技術的發展,闡述大數據從採集、處理、存儲到形成結果的全過程。
實踐是大數據的終極價值。在這里,我們從互聯網大數據、政府大數據、企業大數據、個人大數據四個方面來描繪大數據的美好圖景和將要實現的藍圖。