導航:首頁 > 源碼編譯 > noi演算法

noi演算法

發布時間:2024-12-25 01:59:03

⑴ 沖NOI需要學什麼演算法

在NOIP的基礎上,學完幾何,字元串方面的演算法如KMP、AC自動機、後綴數組,還有各種高級的數據結構。

⑵ noip中的最常用的演算法

沒有哪個更重要,要因題而異的。

DP方程:
1. 資源問題1

-----機器分配問題

F[I,j]:=max(f[i-1,k]+w[i,j-k])

2. 資源問題2

------01背包問題

F[I,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]);

3. 線性動態規劃1

-----樸素最長非降子序列

F[i]:=max{f[j]+1}

4. 剖分問題1

-----石子合並

F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);

5. 剖分問題2

-----多邊形剖分

F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a[i]);

6. 剖分問題3

------乘積最大

f[i,j]:=max(f[k,j-1]*mult[k,i]);

7. 資源問題3

-----系統可靠性(完全背包)

F[i,j]:=max{f[i-1,j-c[i]*k]*P[I,x]}

8. 貪心的動態規劃1

-----快餐問題

F[i,j]表示前i條生產線生產j個漢堡,k個薯條所能生產的最多飲料,

則最多套餐ans:=min{j div a,k div b,f[I,j,k] div c}

F[i,j,k]:=max{f[i-1,j',k']+(T[i]-(j-j')*p1-(k-k')*p2) div p3}

時間復雜度 O(10*100^4)

9. 貪心的動態規劃2

-----過河 f[i]=min{{f(i-k)} (not stone[i])

{f(i-k)}+1} (stone[i]); +貪心壓縮狀態

10. 剖分問題4

-----多邊形-討論的動態規劃

F[i,j]:=max{正正 f[I,k]*f[k+1,j];

負負 g[I,k]*f[k+1,j];

正負 g[I,k]*f[k+1,j];

負正 f[I,k]*g[k+1,j];} g為min

11. 樹型動態規劃1

-----加分二叉樹 (從兩側到根結點模型)

F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]}

12. 樹型動態規劃2

-----選課 (多叉樹轉二叉樹,自頂向下模型)

F[I,j]表示以i為根節點選j門功課得到的最大學分

f[i,j]:=max{f[t[i].l,k]+f[t[i].r,j-k-1]+c[i]}

13. 計數問題1

-----砝碼稱重

const w:array[1..n] of shortint=(1,2,3,5,10,20);

//不同砝碼的重量

var a:array [1..n] of integer;

//不同砝碼的個數

f[0]:=1; 總重量個數(Ans)

f[1]:=0; 第一種重量0;

f[f[0]+1]=f[j]+k*w[j];

(1<=i<=n; 1<=j<=f[0]; 1<=k<=a[i];)

14. 遞推天地1

------核電站問題

f[-1]:=1; f[0]:=1;

f[i]:=2*f[i-1]-f[i-1-m]

15. 遞推天地2

------數的劃分

f[i,j]:=f[i-j,j]+f[i-1,j-1];

16. 最大子矩陣1

-----一最大01子矩陣

f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;

ans:=maxvalue(f);

17. 判定性問題1

-----能否被4整除

g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false;

g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)

18. 判定性問題2

-----能否被k整除

f[I,j±n[i] mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n

20. 線型動態規劃2

-----方塊消除游戲

f[i,i-1,0]:=0

f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k),

f[i,p,k+len[j]]+f[p+1,j-1,0]}

ans:=f[1,m,0]

21. 線型動態規劃3

-----最長公共子串,LCS問題

f[i,j]={0 (i=0)&(j=0);

f[i-1,j-1]+1 (i>0,j>0,x[i]=y[j]);

max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x[i]<>y[j]);

let(n>m); (n=length(a); m:=length(b));

for i:= 1 to n do

begin

x:=-1; p:=1;

for j:= 1 to m do

if a[i]=b[j] then

begin

x:=p;

while flag[j,x] and (f[j,x]<a[i]) do inc(x);

p:=x;

f[j,x]:=a[i];

flag[j,x]:=true;

end

else

if (x<>-1) and flag[j-1,x] and ((not flag[j,x]) or (f[j-1,x]<f[j,x])) then

begin

f[j,x]:=f[j-1,x];

flag[j,x]:=true;

end else x:=-1;

end;

ok:=false;

for i:= m downto 1 do

if flag[m,i] then begin writeln(i); ok:=true; break; end;

if not ok then writeln(0);

22. 最大子矩陣2

-----最大帶權01子矩陣O(n^2*m)

枚舉行的起始,壓縮進數列,求最大欄位和,遇0則清零

f[i]:=max(f[i-1]+a[i],a[i])

readln(n,m);

for i:= 1 to n do for j:= 1 to m do read(a[i,j]);

ans:=-maxlongint;

for i:= 1 to n do

begin

fillchar(b,sizeof(b),0);

fillchar(u,sizeof(u),0);

for j:= i to n do

begin

max:=0;

for k:= 1 to m do

begin

if (a[j,k]<>0) and (not u[k]) then

begin

inc(b[k],a[j,k]);

inc(max,b[k])

end

else

begin

max:=0;

u[k]:=true;

end;

if max>ans then ans:=max;

end;

end;

end;

23. 資源問題4

-----裝箱問題(判定性01背包)

f[j]:=(f[j] or f[j-v[i]]);

注: 這里將數字三角形的意義擴大

凡狀態轉移為圖形,跟其上面階段和前面狀態有關都叫數字三角形:)

24. 數字三角形1

-----樸素の數字三角形

f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);

25. 數字三角形2

-----晴天小豬歷險記之Hill

同一階段上暴力動態規劃

if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j]

26. 雙向動態規劃1

數字三角形3

-----小胖辦證

f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j])

27. 數字三角形4

-----過河卒

//邊界初始化

f[i,j]:=f[i-1,j]+f[i,j-1];

28. 數字三角形5

-----樸素的打磚塊

f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);

29. 數字三角形6

-----優化的打磚塊

f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]}

30. 線性動態規劃3

-----打鼴鼠』

f[i]:=f[j]+1;(abs(x[i]-x[j])+abs(y[i]-y[j])<=t[i]-t[j])

31. 樹形動態規劃3

-----貪吃的九頭龍

32. 狀態壓縮動態規劃1

-----炮兵陣地

Max(f[Q*(r+1)+k],g[j]+num[k])

If (map[i] and plan[k]=0) and

((plan[P] or plan[q]) and plan[k]=0)

33. 遞推天地3

-----情書抄寫員

f[i]:=f[i-1]+k*f[i-2]

34. 遞推天地4

-----錯位排列

f[i]:=(i-1)(f[i-2]+f[i-1]);

f[n]:=n*f[n-1]+(-1)^(n-2);

35. 遞推天地5

-----直線分平面最大區域數

f[n]:=f[n-1]+n

:=n*(n+1) div 2 + 1;

36. 遞推天地6

-----折線分平面最大區域數

f[n]:=(n-1)(2*n-1)+2*n;

37. 遞推天地7

-----封閉曲線分平面最大區域數

f[n]:=f[n-1]+2*(n-1)

:=sqr(n)-n+2;

38 遞推天地8

-----凸多邊形分三角形方法數

f[n]:=C(2*n-2,n-1) div n;

對於k邊形

f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)

39 遞推天地9

-----Catalan數列一般形式

1,1,2,5,14,42,132

f[n]:=C(2k,k) div (k+1);

40 遞推天地10

-----彩燈布置

排列組合中的環形染色問題

f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);

41 線性動態規劃4

-----找數

線性掃描

sum:=f[i]+g[j];

(if sum=Aim then getout; if sum<Aim then inc(i) else inc(j);)

42 線性動態規劃5

-----隱形的翅膀

min:=min{abs(w[i]/w[j]-gold)};

if w[i]/w[j]<gold then inc(i) else inc(j);

43 剖分問題5

-----最大獎勵

f[i]:=max(f[i],f[j]+(sum[j]-sum[i])*i-t

44 最短路1

-----Floyd

f[i,j]:=max(f[i,j],f[i,k]+f[k,j]);

ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];

45 剖分問題6

-----小H的小屋

F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);

function GetS(l,n:longint):extended;

begin

if (n=0) or (n>l) then exit(WQ)

else getS:=(l mod n)*k2*sqr(l div n+1)+

(n-l mod n)*k2*sqr(l div n)+

k1*sqr(l);

end;

if x+S(x,k)>=f[i,q,p] then break else f[i,q,p]:=x+S(x,k);inc(k);

46 計數問題2

-----隕石的秘密(排列組合中的計數問題)

Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];

F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);

47 線性動態規劃

------合唱隊形

兩次F[i]:=max{f[j]+1}+枚舉中央結點

48 資源問題

------明明的預算方案:加花的動態規劃

f[i,j]:=max(f[i,j],f[l,j-v[i]-v[fb[i]]-v[fa[i]]]+v[i]*p[i]+v[fb[i]]*p[fb[i]]+v[fa[i]]*p[fa[i]]);

49 資源問題

-----化工場裝箱員

50 樹形動態規劃

-----聚會的快樂

f[i,2]:=max(f[i,0],f[i,1]);

f[i,1]:=sigma(f[t[i]^.son,0]);

f[i,0]:=sigma(f[t[i]^.son,3]);

51 樹形動態規劃

-----皇宮看守

f[i,2]:=max(f[i,0],f[i,1]);

f[i,1]:=sigma(f[t[i]^.son,0]);

f[i,0]:=sigma(f[t[i]^.son,3]);

52 遞推天地

-----盒子與球

f[i,1]:=1;

f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);

53 雙重動態規劃

-----有限的基因序列

f[i]:=min{f[j]+1}

g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j])

54 最大子矩陣問題

-----居住空間

f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),

min(f[i,j,k-1],f[i-1,j-1,k])),

min(min(f[i-1,j,k-1],f[i,j-1,k-1]),

f[i-1,j-1,k-1]))+1;

55 線性動態規劃

------日程安排

f[i]:=max{f[j]}+P[I]; (e[j]<s[i])

56 遞推天地

------組合數

C[I,j]:=C[i-1,j]+C[I-1,j-1]
C[I,0]:=1

57 樹形動態規劃

-----有向樹k中值問題

F[I,r,k]:=max{max{f[l[i],I,j]+f[r[i],I,k-j-1]},f[f[l[i],r,j]+f[r[i],r,k-j]+w[I,r]]}

58 樹形動態規劃

-----CTSC 2001選課

F[I,j]:=w[i](if i∈P)+f[l[i],k]+f[r[i],m-k](0≤k≤m)(if l[i]<>0)

59 線性動態規劃

-----多重歷史

f[i,j]:=sigma{f[i-k,j-1]}(if checked)

60 背包問題(+-1背包問題+回溯)
-----CEOI1998 Substract

f[i,j]:=f[i-1,j-a[i]] or f[i-1,j+a[i]]

61 線性動態規劃(字元串)

-----NOI 2000 古城之謎

f[i,1,1]:=min{f[i+length(s),2,1], f[i+length(s),1,1]+1} f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+words[s]}

62 線性動態規劃

-----最少單詞個數

f[i,j]:=max{f[I,j],f[u-1,j-1]+l}

63 線型動態規劃

-----APIO2007 數據備份

狀態壓縮+剪掉每個階段j前j*2個狀態和j*2+200後的狀態貪心動態規劃

f[i]:=min(g[i-2]+s[i],f[i-1]);

64 樹形動態規劃

-----APIO2007 風鈴

f[i]:=f[l]+f[r]+{1 (if c[l]<c[r])}

g[i]:=1(d[l]<>d[r]) 0(d[l]=d[r])

g[l]=g[r]=1 then Halt;

65 地圖動態規劃

-----NOI 2005 adv19910

F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];

66 地圖動態規劃

-----優化的NOI 2005 adv19910

F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;

67 目標動態規劃

-----CEOI98 subtra

F[I,j]:=f[I-1,j+a[i]] or f[i-1,j-a[i]]

68 目標動態規劃

----- Vijos 1037搭建雙塔問題

F[value,delta]:=g[value+a[i],delta+a[i]] or g[value,delta-a[i]]

69 樹形動態規劃

-----有線電視網

f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j])

leaves[i]>=p>=l, 1<=q<=p;

70 地圖動態規劃

-----vijos某題

F[I,j]:=min(f[i-1,j-1],f[I,j-1],f[i-1,j]);

71 最大子矩陣問題

-----最大欄位和問題

f[i]:=max(f[i-1]+b[i],b[i]); f[1]:=b[1]

72 最大子矩陣問題

-----最大子立方體問題

枚舉一組邊i的起始,壓縮進矩陣 B[I,j]+=a[x,I,j]

枚舉另外一組邊的其實,做最大子矩陣

73 括弧序列

-----線型動態規劃

f[I,j]:=min(f[I,j],f[i+1,j-1](s[i]s[j]=」()」or(」[]」)),

f[I+1,j+1]+1 (s[j]=」(」or」[」 ] , f[I,j-1]+1(s[j]=」)」or」]」 )

74 棋盤切割

-----線型動態規劃

f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],

f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]

min{}}

75 概率動態規劃

-----聰聰和可可(NOI2005)

x:=p[p[i,j],j]

f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1

f[I,i]=0

f[x,j]=1

76 概率動態規劃

-----血緣關系

我們正在研究妖怪家族的血緣關系。每個妖怪都有相同數量的基因,但是不同的妖怪的基因可能是不同的。我們希望知道任意給定的兩個妖怪之間究竟有多少相同的基因。由於基因數量相當龐大,直接檢測是行不通的。但是,我們知道妖怪家族的家譜,所以我們可以根據家譜來估算兩個妖怪之間相同基因的數量。

妖怪之間的基因繼承關系相當簡單:如果妖怪C是妖怪A和B的孩子,則C的任意一個基因只能是繼承A或B的基因,繼承A或B的概率各佔50%。所有基因可認為是相互獨立的,每個基因的繼承關系不受別的基因影響。

現在,我們來定義兩個妖怪X和Y的基因相似程度。例如,有一個家族,這個家族中有兩個毫無關系(沒有相同基因)的妖怪A和B,及它們的孩子C和D。那麼C和D相似程度是多少呢?因為C和D的基因都來自A和B,從概率來說,各佔50%。所以,依概率計算C和D平均有50%的相同基因,C和D的基因相似程度為50%。需要注意的是,如果A和B之間存在相同基因的話,C和D的基因相似程度就不再是50%了。

你的任務是寫一個程序,對於給定的家譜以及成對出現的妖怪,計算它們之間的基因相似程度。

F[A, B]=(f[A0, B]+P[A1, B])/2

f[I,i]=1

f[I,j]=0(I,j無相同基因)

77 線性動態規劃

-----決斗

F[I,j]=(f[I,j] and f[k,j]) and (e[I,k] or e[j,k]),i<k<j

78 線性動態規劃

-----舞蹈家

F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]])

79 線性動態規劃

-----積木游戲

F[I,a,b,k]=max(f[I,a+1,b,k],f[i+1,a+1,a+1,k』],f[I,a+1,a+1,k』])

80 樹形動態規劃(雙次記錄)

-----NOI2003 逃學的小孩

樸素的話枚舉節點i和離其最遠的兩個節點 j,k O(n^2)

每個節點記錄最大的兩個值,並記錄這最大值分別是從哪個相鄰節點傳過來的。當遍歷到某個孩子節點的時候,只需檢查最大值是否是從該孩子節點傳遞來的。如果是,就取次大,否則取最大值

81 樹形動態規劃(完全二叉樹)

-----NOI2006 網路收費

F[I,j,k]表示在點i所管轄的所有用戶中,有j個用戶為A,在I的每個祖先u上,如果N[a]>N[b]則標0否則標1,用二進制狀態壓縮進k中,在這種情況下的最小花費

F[I,j,k]:=min{ f[l,u,k and (s[i]<<(i-1))]

+w1,f[r,j-u,k and(s[i]<<(i-1))]}

82 樹形動態規劃

-----IOI2005 河流

F[i]:=max

83 記憶化搜索

-----Vijos某題,忘了

F[pre,h,m]:=sigma{SDP(I,h+1,M+i)} (pre<=i<=M+1)

84 狀態壓縮動態規劃

-----APIO 2007 動物園

f[I,k]:=f[i-1,k and not (1<<4)] + NewAddVal

85 樹形動態規劃

-----訪問術館

f[i,j-c[i]×2]:= max ( f[l[i],k], f[r[i],j-c[i]×2-k] )

86 字元串動態規劃

-----Ural 1002 Phone

if exist((s,j,i-j)) then f[i]:=min(f[i],f[j]+1);

87 多進程動態規劃

-----CEOI 2005 service

Min( f[i,j,k], f[i-1,j,k] + c[t[i-1],t[i]] )

Min( f[i,t[i-1],k], f[i-1,j,k] + c[j,t[i]] )

Min( f[i,j,t[i-1]], f[i-1,j,k] + c[k,t[i]] )

88 多進程動態規劃

-----Vijos1143 三取方格數

max(f[i,j,k,l],f[i-1,j-R[m,1],k-R[m,2],l-R[m,3]]);

if (j=k) and (k=l) then inc(f[i,j,k,l],a[j,i-j]) else

if (j=k) then inc(f[i,j,k,l],a[j,i-j]+a[l,i-l]) else

if (k=l) then inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]) else

if (j=l) then inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]) else

inc(f[i,j,k,l],a[j,i-j]+a[k,i-k]+a[l,i-l]);

89 線型動態規劃

-----IOI 2000 郵局問題

f[i,j]:=min(f[I,j],f[k,j-1]+d[k+1,i]);

90 線型動態規劃

-----Vijos 1198 最佳課題選擇

if j-k>=0 then Min(f[i,j],f[i-1,j-k]+time(i,k));

91 背包問題

----- USACO Raucous Rockers

多個背包,不可以重復放物品,但放物品的順序有限制。

F[I,j,k]表示決策到第i個物品、第j個背包,此背包花費了k的空間。

f[I,j,k]:=max(f[I-1,j,k],f[I-1,j,k-t[i]]+p[i],f[i-1,j-1,maxtime-t[i]])

92 多進程動態規劃

-----巡遊加拿大(IOI95、USACO)

d[i,j]=max{d[k,j]+1(a[k,i] & j<k<i),d[j,k]+1(a[I,j] & (k<j))}。

f[i,j]表示從起點出發,一個人到達i,另一個人到達j時經過的城市數。d[i,j]=d[j,i],所以我們限制i>j

分析狀態(i,j),它可能是(k,j)(j<k<i)中k到達i得到(方式1),也可能是(j,k)(k<j)中k超過j到達i得到(方式2)。但它不能是(i,k)(k<j)中k到達j得到,因為這樣可能會出現重復路徑。即使不會出現重復路徑,那麼它由(j,k)通過方式2同樣可以得到,所以不會遺漏解 時間復雜度O(n3)

93 動態規劃

-----ZOJ cheese

f[i,j]:=f[i-kk*zl[u,1],j-kk*zl[u,2]]+a[i-kk*zl[u,1],j-kk*zl[u,2]]

94 動態規劃

-----NOI 2004 berry 線性

F[I,1]:=s[i]

F[I,j]:=max{min{s[i]-s[l-1]},f[l-1,j-1]} (2≤j≤k, j≤l≤i)

95 動態規劃

-----NOI 2004 berry 完全無向圖

F[I,j]:=f[i-1,j] or (j≥w[i]) and (f[i-1,j-w[i]])

96 動態規劃

-----石子合並 四邊形不等式優化

m[i,j]=max{m[i+1,j], m[i,j-1]}+t[i,j]

97 動態規劃

-----CEOI 2005 service
(k≥long[i],i≥1)g[i, j, k]=max{g[i-1,j,k-long[i]]+1,g[i-1,j,k]}

(k<long[i],i≥1) g[i, j, k]=max{g[i-1,j-1,t-long[i]]+1,g[i-1,j,k]}

(0≤j≤m, 0≤k<t) g[0,j,k]=0;

ans:=g[n,m,0]。

狀態優化:g[i, j]=min{g[i-1,j],g[i-1,j-1]+long[i]}

其中(a, b)+long[i]=(a』, b』)的計算方法為:

當b+long[i] ≤t時: a』=a; b』=b+long[i];

當b+long[i] >t時: a』=a+1; b』=long[i];

規劃的邊界條件:

當0≤i≤n時,g[i,0]=(0,0)

98 動態規劃

-----AHOI 2006寶庫通道

f[k]:=max{f[k-1]+x[k,j]-x[k,i-1], x[k,j]-x[k,i-1]}

for i:= 1 to n do

begin

for j:= 1 to m do

begin

read(a[i,j]);

if a[i,j]='1' then x[i,j]:=x[i,j-1]+1

else x[i,j]:=x[i,j-1]-1;

end;

readln;

end;

for i:= 1 to m do

for j:= i to m do

begin

y:=0;

for k:= 1 to n do

begin

z:=x[k,j]-x[k,i-1];

if y>0 then inc(y,z) else y:=z;

if y>ans then ans:=y;

end;

end;

99 動態規劃

-----Travel

A) 費用最少的旅行計劃。

設f[i]表示從起點到第i個旅店住宿一天的最小費用;g[i]表示從起點到第i個旅店住宿一天,在滿足最小費用的前提下所需要的最少天數。那麼:

f[i]=f[x]+v[i], g[i]=g[x]+1

x滿足:

1、 x<i,且d[i] – d[x] <= 800(一天的最大行程)。

2、 對於所有的t < i, d[i] – d[t] <= 800,都必須滿足:

A. g[x] < g[t](f[x] = f[t]時) B. f[x] < f[t] (其他情況)

f[0] = 0,g[0] = 0。 Ans:=f[n + 1],g[n+1]。

B). 天數最少的旅行計劃。

方法其實和第一問十分類似。

設g』[i]表示從起點到第i個旅店住宿一天的最少天數;f』[i]表示從起點到第i個旅店住宿一天,在滿足最小天數前提下所需要的最少費用。那麼:

g』[i] = g』[x] + 1, f』[i] = f』[x] + v[i]

x滿足:

1、 x<i,且d[i] – d[x] <= 800(一天的最大行程)。

2、 對於所有的t < i, d[i] – d[t] <= 800,都必須滿足:

f』[x] < f』[t] g』[x] = g』[t]時

g』[x] < g』[t] 其他情況

f』[0] = 0,g』[0] = 0。 Ans:=f』[n + 1],g』[n+1]。

100 動態規劃

-----NOI 2007 cash

y:=f[j]/(a[j]*c[j]+b[j]);

g:=c[j]*y*a[i]+y*b[i];

f[i]:=max(f[i],g)

⑶ 全國青少年信息學奧林匹克章程成績評定和認定

全國青少年信息學奧林匹克競賽的評測標准僅關注最終輸出的結果,不涉及過程與演算法。


NOI獲獎比例由NOI一章明確給出。


NOI評測由科學委員會負責,最終成績由委員會主席簽發。


NOIP提高組復賽一等獎獲獎人數的計算公式如下:所有獲獎者必須達到最低分數線,該分數線由科學委員會和競賽委員會在競賽結束後設定。對於參加初賽人數不超過2000人的省,獲獎名額為初賽選手人數的1%(四捨五入);人數超過2000人的省,獲獎名額為b加上(p-2000)×k,其中k根據全國未分配名額與(p-2000)各省份之和的比例確定。一個省最多可獲獎50人,不足500人可獲得5個名額。高中階段已獲獎的選手不計入本屆聯賽一等獎名額。


普及組復賽一等獎不設名額限制,獎項評定由省賽區負責,結果需上報主辦單位備案。


NOI一、二、三等獎及NOIP提高組復賽一等獎獲得者名單將由中國計算機學會上報至中國科協,由中國科協審核後備案至教育部。


NOIP提高組復賽一等獎由計算機學會確定,其他單位或個人確定的無效。


NOIP各賽區上報一等獎候選名單需由組織單位蓋章,並由特派員簽字。


NOIP二等獎人數不超過復賽人數的20%,且滿足科學委員會設定的最低分數線。省賽區據此認定並上報至主辦單位。


NOI的獲獎證書由中國科協青少年部及中國計算機學會共同頒發,NOIP一等獎由中國計算機學會頒發,NOIP提高組復賽二等獎及其他獎項由省級組織單位頒發。證書均由相關單位統一製作或印製。


主辦單位在NOI網站上公布獲獎名單及成績,接受教育、科研機構及社會各界查詢。


(3)noi演算法擴展閱讀

全國青少年信息學奧林匹克競賽是一項面向全國青少年的信息學競賽和普及活動,旨在向那些在中學階段學習的青少年普及計算機科學知識;給學校的信息技術教育課程提供動力和新的思路;給那些有才華的學生提供相互交流和學習的機會;通過競賽和相關的活動培養和選拔優秀的計算機人才。競賽的目的是為了在更高層次上推動普及。本競賽及其相關活動遵循開放性原則,任何有條件和有興趣的學校和個人,都可以在業余時間自願參加。參加者可為初高中學生或其他中等專業學校的青少年。

⑷ NOIP和NOI需要掌握的內容

Noi
時間復雜度(漸近時間復雜度的嚴格定義,NP問題,時間復雜度的分析方法,主定理)

排序演算法(平方排序演算法的應用,Shell排序,快速排序,歸並排序,時間復雜度下界,三種線性時間排序,外部排序)

數論(整除,集合論,關系,素數,進位制,輾轉相除,擴展的輾轉相除,同餘運算,解線性同餘方程,中國剩餘定理)

指針(鏈表,搜索判重,鄰接表,開散列,二叉樹的表示,多叉樹的表示)

按位運算(and,or,xor,shl,shr,一些應用)

圖論(圖論模型的建立,平面圖,歐拉公式與五色定理,求強連通分量,求割點和橋,歐拉迴路,AOV問題,AOE問題,最小生成樹的三種演算法,最短路的三種 演算法,標號法,差分約束系統,驗證二分圖,Konig定理,匈牙利演算法,KM演算法,穩定婚姻系統,最大流演算法,最小割最大流定理,最小費用最大流演算法)

計算幾何(平面解幾及其應用,向量,點積及其應用,叉積及其應用,半平面相交,求點集的凸包,最近點對問題,凸多邊形的交,離散化與掃描)

數據結構(廣度優先搜索,驗證括弧匹配,表達式計算,遞歸的編譯,Hash表,分段Hash,並查集,Tarjan演算法,二叉堆,左偏樹,斜堆,二項堆, 二叉查找樹,AVL,Treap,Splay,靜態二叉查找樹,2-d樹,線段樹,二維線段樹,矩形樹,Trie樹,塊狀鏈表)

組合數學(排列與組合,鴿籠原理,容斥原理,遞推,Fibonacci數列,Catalan數列,Stirling數,差分序列,生成函數,置換,Polya原理)

概率論(簡單概率,條件概率,Bayes定理,期望值)

矩陣(矩陣的概念和運算,二分求解線性遞推方程,多米諾骨牌棋盤覆蓋方案數,高斯消元)

字元串處理(KMP,後綴樹,有限狀態自動機,Huffman編碼,簡單密碼學)

動態規劃(單調隊列,凸完全單調性,樹型動規,多叉轉二叉,狀態壓縮類動規,四邊形不等式)

博奕論(Nim取子游戲,博弈樹,Shannon開關游戲)

搜索(A*,ID,IDA*,隨機調整,遺傳演算法)

微積分初步(極限思想,導數,積分,定積分,立體解析幾何)

Noip
掌握樓上的就行了

閱讀全文

與noi演算法相關的資料

熱點內容
prom文件夾 瀏覽:726
不規則土方的演算法 瀏覽:209
tor加密貨幣網站 瀏覽:449
linux轉ansi 瀏覽:736
網站源碼怎麼查 瀏覽:687
高cpu雲伺服器 瀏覽:365
androidwebrtcaecm 瀏覽:981
阿里雲部署java 瀏覽:636
雲是不是就是個大的伺服器 瀏覽:581
如何建立linux日誌管理伺服器 瀏覽:772
悟空頭圖標是什麼APP 瀏覽:555
linuxandroid虛擬機 瀏覽:281
ps李濤pdf 瀏覽:638
linuxfork線程 瀏覽:97
易語言編譯改名 瀏覽:723
阿里伺服器都提供什麼 瀏覽:756
cf打開伺服器接不上怎麼辦 瀏覽:901
linux下more命令 瀏覽:402
des演算法運算位數 瀏覽:375
珠海建行貸款解壓 瀏覽:635