導航:首頁 > 源碼編譯 > 演算法工程師經驗

演算法工程師經驗

發布時間:2024-12-30 01:24:25

演算法工程師應該學哪些

一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機

相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。

相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】

(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等

(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。

② 如何成為一名合格的演算法工程師

BAT企業的演算法工程師是這樣工作的:問題抽象、數據採集和處理、特徵工程、建模訓練調優、模型評估、上線部署。(具體操作可以看阿里演算法專家chris老師的演算法工作流視頻演算法工作流是怎樣的?)而一個演算法工程師真正值錢的地方在於問題抽象和上線部署這兩個。


③ 演算法工程師可以自學嗎

演算法工程師確實可以自學,但需要付出巨大努力。這項工作要求極高的數學素養和邏輯思維能力。學習者需掌握高等數學、線性代數、離散數學、數據結構及計算機組成原理等知識。建議有計算機、電子通信或數學等相關專業背景的人士更容易上手。

自學演算法工程師的關鍵在於系統化學習。首先,可以從理解基本數學概念開始,如集合、函數和極限等。接著,學習高等數學中的微積分和線性代數,掌握向量、矩陣和特徵值的概念。離散數學則涉及邏輯、集合論和圖論等內容,對於演算法設計至關重要。

數據結構是計算機科學的核心,學習棧、隊列、鏈表、樹、圖等數據結構的原理和實現方式。此外,計算機組成原理幫助理解硬體層面的知識,這對於優化演算法具有重要意義。

自學過程中,需要通過大量編程練習來鞏固理論知識。可以選擇Python、C++等編程語言,編寫代碼實現演算法。同時,可以利用在線課程、視頻教程和編程平台進行學習,如Coursera、edX、LeetCode等。

自學演算法工程師需要時間和耐心,建議設定明確的學習目標,堅持每天學習,逐步提高自己的技能水平。加入技術社區,與其他學習者交流經驗,共同進步。

④ 演算法工程師的年薪大概多少我應屆畢業生

演算法工程師,碩士生應屆畢業,能夠拿到 30w ~ 60w;對於本科生而言,找個演算法工程師的工作就已經不容易,大廠比較難,小廠容易一些。三年經驗,根據認識的幾位同事,正常表現,應該能夠到 45w ~ 55 w 左右。

⑤ 成為一名 AI 演算法工程師,你需要具備哪些能力

這是一篇關於如何成為一名 AI 演算法工程師的長文~經常有朋友私信問,如何學 python 呀,如何敲代碼呀,如何進入 AI 行業呀?這里總結了成為AI演算法工程師所需要掌握的一些要點,看看你距離成為一名 AI 工程師還有多遠吧~

一、程序編寫
如同大部分應用軟體程序流程的開發設計一樣,開發者也在應用多語種來撰寫人工智慧技術新項目,可是如今都還沒一切一種極致的計算機語言是能夠 徹底大聖配人工智慧技術新項目的。計算機語言的挑選通常在於對人工智慧技術程序流程的期待作用。
因為其英語的語法,簡易性和多功能化,Python變成開發者最愛的人工智慧技術開發設計計算機語言。Python最觸動內心的地區之一就是說攜帶型,它能夠 在Linux、Windows、MacOS和UNIX等服務平台上應用。容許客戶建立互動式的、表述的、模塊化設計的、動態性的、可移植的和高級的編碼。
此外,Python是一種多現代性計算機語言,適用面向對象編程,全過程式和作用式程序編寫設計風格。因為其簡易的函數庫和理想化的構造,Python適用神經元網路和NLP解決方法的開發設計。
變成一個達標的AI數據工程師必須靈活運用python基本英語的語法、python句子和表述句、python中的涵數與控制模塊、python面向對象編程及其python文字實際操作。把握面向對象編程數據信息編程技術,都是為中後期的AI學習培訓奠定扎扎實實的程序編寫工作能力。
二、數學課
要學習培訓人工智慧技術,最基礎的高數、線代、摡率論務必把握,最少也得會高斯函數、矩陣求導,搞清楚梯度下降是什麼原因,不然針對實體模型的基本概念徹底不可以了解,實體模型調參加訓煉也就無從說起了。
高數
高數必須把握的有關內容包含涵數、數列、極限、最後、極值與最值、威廉姆斯指數值和系數。
線性代數
線性代數的內容包含行列式、引流矩陣、最小二乘法、矢量的線性相關性、引流矩陣的初等變換和秩、線性方程組的解和矩陣特徵值
概率統計
概率統計里的惡性事件、幾率、貝葉斯定理、概率分布、期待與方差與參數估計
了解數學思維訓練管理體系在深度神經網路中的運用,能夠 了解深度神經網路中常見的數學函數公式,可以用python程序編寫保持常見的數學課優化演算法。
三、深度神經網路
深度神經網路一部分包含MLP實體模型、CNN卷積神經網路、RNN循環系統神經元網路、GAN生成式抵抗神經元網路等。
MLP實體模型
必須具有了解雙層感知機的運作全過程和基本原理,並可以構建雙層感知機實體模型。
CNN卷積神經網路
把握怎麼使用CNN互聯網解決室內空間難題,如照片、視頻等數據信息。了解卷積、池化,及其反卷積、反池化的全過程和基本原理。而且可以構建有關的卷積互聯網實體模型。
RNN循環系統神經元網路
把握怎麼使用RNN解決時間序列難題,如智能化回復、智能翻譯等。了解循環系統神經元網路RNN和LSTM、GRU的運作全過程和基本原理。可以構建有關的循環系統神經網路模型訓煉與提升。
GAN生成式抵抗神經元網路
讓神經元網路具有造就工作能力,了解生成式抵抗神經元網路和其變異互聯網的基本原理,並可以構建變分自編號的互聯網實體模型訓煉和提升,可保持圖象轉化成、視頻語音轉化成等。
四、新項目實戰演練
開展一些新項目實戰演練針對你的工作經驗累積是十分有利的。
人工智慧技術圖象/視覺行業數據工程師應當具有的新項目實踐經驗:YOLOV3多物塊跟蹤/CenterLoss圖像識別技術/Mask-RCNN圖像分割。
可以解決多總體目標跟蹤,圖像識別技術、圖象隔開、圖象核對等應用領域新項目。而且根據新項目能學得許多 工程項目方法,具體新項目中訓煉實體模型的方式 和調參的工作經驗。掌握了這些,你的AI演算法工程師之路就能更近一步啦~
 

閱讀全文

與演算法工程師經驗相關的資料

熱點內容
帝都的程序員住哪裡 瀏覽:90
為什麼安卓手機沒蘋果的音質好 瀏覽:71
pdf文檔免費翻譯軟體 瀏覽:928
裝系統出現解壓報錯 瀏覽:79
android調用地圖 瀏覽:907
針織廠程序員 瀏覽:176
android製作差分包 瀏覽:9
命令腳本和msdos區別 瀏覽:124
哈佛提前編程需要學習嗎 瀏覽:465
cng壓縮機回收罐 瀏覽:535
怪物獵人xx3ds安裝包解壓 瀏覽:598
無盡的拉格朗日怎麼轉伺服器 瀏覽:892
程序員為公司竊取用戶隱私自首 瀏覽:664
程序員西瓜包子 瀏覽:669
如何把手機的app傳上電視 瀏覽:128
如何能把app卸載干凈 瀏覽:80
怎麼看源碼是否反編譯的 瀏覽:579
方舟編譯器應用機型 瀏覽:614
最新代理伺服器地址大全 瀏覽:423
安卓和java前景 瀏覽:665