導航:首頁 > 源碼編譯 > bp演算法屬於有師還是無師

bp演算法屬於有師還是無師

發布時間:2024-12-30 13:23:06

Ⅰ 什麼是BP神經網路

BP演算法的基本思想是:學習過程由信號正向傳播與誤差的反向回傳兩個部分組成;正向傳播時,輸入樣本從輸入層傳入,經各隱層依次逐層處理,傳向輸出層,若輸出層輸出與期望不符,則將誤差作為調整信號逐層反向回傳,對神經元之間的連接權矩陣做出處理,使誤差減小。經反復學習,最終使誤差減小到可接受的范圍。具體步驟如下:
1、從訓練集中取出某一樣本,把信息輸入網路中。
2、通過各節點間的連接情況正向逐層處理後,得到神經網路的實際輸出。
3、計算網路實際輸出與期望輸出的誤差。
4、將誤差逐層反向回傳至之前各層,並按一定原則將誤差信號載入到連接權值上,使整個神經網路的連接權值向誤差減小的方向轉化。
5、対訓練集中每一個輸入—輸出樣本對重復以上步驟,直到整個訓練樣本集的誤差減小到符合要求為止。

Ⅱ 智能演算法的演算法分類

模擬退火演算法的依據是固體物質退火過程和組合優化問題之間的相似性。物質在加熱的時候,粒子間的布朗運動增強,到達一定強度後,固體物質轉化為液態,這個時候再進行退火,粒子熱運動減弱,並逐漸趨於有序,最後達到穩定。
模擬退火的解不再像局部搜索那樣最後的結果依賴初始點。它引入了一個接受概率p。如果新的點(設為pn)的目標函數f(pn)更好,則p=1,表示選取新點;否則,接受概率p是當前點(設為pc)的目標函數f(pc),新點的目標函數f(pn)以及另一個控制參數「溫度」T的函數。也就是說,模擬退火沒有像局部搜索那樣每次都貪婪地尋找比現在好的點,目標函數差一點的點也有可能接受進來。隨著演算法的執行,系統溫度T逐漸降低,最後終止於某個低溫,在該溫度下,系統不再接受變化。
模擬退火的典型特徵是除了接受目標函數的改進外,還接受一個衰減極限,當T較大時,接受較大的衰減,當T逐漸變小時,接受較小的衰減,當T為0時,就不再接受衰減。這一特徵意味著模擬退火與局部搜索相反,它能避開局部極小,並且還保持了局部搜索的通用性和簡單性。
在物理上,先加熱,讓分子間互相碰撞,變成無序狀態,內能加大,然後降溫,最後的分子次序反而會更有序,內能比沒有加熱前更小。就像那隻兔子,它喝醉後,對比較近的山峰視而不見,迷迷糊糊地跳一大圈子,反而更有可能找到珠峰。
值得注意的是,當T為0時,模擬退火就成為局部搜索的一個特例。
模擬退火的偽碼表達:
procere simulated annealing
begin
t:=0;
initialize temperature T
select a current string vc at random;
evaluate vc;
repeat
repeat
select a new string vn in the neighborhood of vc; (1)
if f(vc)<f(vn)
then vc:=vn;
else if random [0,1] <exp ((f (vn)-f (vc))/T) (2)
then vc:=vn;
until (termination-condition) (3)
T:=g(T,t); (4)
T:=t+1;
until (stop-criterion) (5)
end;
上面的程序中,關鍵的是(1)新狀態產生函數,(2)新狀態接受函數,(3)抽樣穩定準則,(4)退溫函數,(5)退火結束准則(簡稱三函數兩准則)是直接影響優化結果的主要環節。雖然實驗結果證明初始值對於最後的結果沒有影響,但是初溫越高,得到高質量解的概率越大。所以,應該盡量選取比較高的初溫。
上面關鍵環節的選取策略:
(1)狀態產生函數:候選解由當前解的鄰域函數決定,可以取互換,插入,逆序等操作產生,然後根據概率分布方式選取新的解,概率可以取均勻分布、正態分布、高斯分布、柯西分布等。
(2)狀態接受函數:這個環節最關鍵,但是,實驗表明,何種接受函數對於最後結果影響不大。所以,一般選取min [1, exp ((f (vn)-f (vc))/T)]。
(3)抽樣穩定準則:一般常用的有:檢驗目標函數的均值是否穩定;連續若干步的目標值變化較小;規定一定的步數;
(4)退溫函數:如果要求溫度必須按照一定的比率下降,SA演算法可以採用,但是溫度下降很慢;快速SA中,一般採用 。目前,經常用的是 ,是一個不斷變化的值。
(5)退火結束准則:一般有:設置終止溫度;設置迭代次數;搜索到的最優值連續多次保持不變;檢驗系統熵是否穩定。
為了保證有比較優的解,演算法往往採取慢降溫、多抽樣、以及把「終止溫度」設的比較低等方式,導致演算法運行時間比較長,這也是模擬退火的最大缺點。人喝醉了酒辦起事來都不利索,何況兔子? 「物競天擇,適者生存」,是進化論的基本思想。遺傳演算法就是模擬自然界想做的事。遺傳演算法可以很好地用於優化問題,若把它看作對自然過程高度理想化的模擬,更能顯出它本身的優雅——雖然生存競爭是殘酷的。
遺傳演算法以一種群體中的所有個體為對象,並利用隨機化技術指導對一個被編碼的參數空間進行高效搜索。其中,選擇、交叉和變異構成了遺傳演算法的遺傳操作;參數編碼、初始群體的設定、適應度函數的設計、遺傳操作設計、控制參數設定五個要素組成了遺傳演算法的核心內容。作為一種新的全局優化搜索演算法,遺傳演算法以其簡單通用、健壯性強、適於並行處理以及高效、實用等顯著特點,在各個領域得到了廣泛應用,取得了良好效果,並逐漸成為重要的智能演算法之一。
遺傳演算法的偽碼:
procere genetic algorithm
begin
initialize a group and evaluate the fitness value ; (1)
while not convergent (2)
begin
select; (3)
if random[0,1]<pc then
crossover; (4)
if random (0,1)<pm then
mutation; (5)
end;
end
上述程序中有五個重要的環節:
(1)編碼和初始群體的生成:GA在進行搜索之前先將解空間的解數據表示成遺傳空間的基因型串結構數據,這些串結構數據的不同組合便構成了不同的點。然後隨機產生N個初始串結構數據,每個串結構數據稱為一個個體, N個體構成了一個群體。GA以這N個串結構數據作為初始點開始迭代。
比如,旅行商問題中,可以把商人走過的路徑進行編碼,也可以對整個圖矩陣進行編碼。編碼方式依賴於問題怎樣描述比較好解決。初始群體也應該選取適當,如果選取的過小則雜交優勢不明顯,演算法性能很差(數量上佔了優勢的老鼠進化能力比老虎強),群體選取太大則計算量太大。
(2)檢查演算法收斂准則是否滿足,控制演算法是否結束。可以採用判斷與最優解的適配度或者定一個迭代次數來達到。
(3)適應性值評估檢測和選擇:適應性函數表明個體或解的優劣性,在程序的開始也應該評價適應性,以便和以後的做比較。不同的問題,適應性函數的定義方式也不同。根據適應性的好壞,進行選擇。選擇的目的是為了從當前群體中選出優良的個體,使它們有機會作為父代為下一代繁殖子孫。遺傳演算法通過選擇過程體現這一思想,進行選擇的原則是適應性強的個體為下一代貢獻一個或多個後代的概率大。選擇實現了達爾文的適者生存原則。
(4)雜交:按照雜交概率(pc)進行雜交。雜交操作是遺傳演算法中最主要的遺傳操作。通過雜交操作可以得到新一代個體,新個體組合了其父輩個體的特性。雜交體現了信息交換的思想。
可以選定一個點對染色體串進行互換,插入,逆序等雜交,也可以隨機選取幾個點雜交。雜交概率如果太大,種群更新快,但是高適應性的個體很容易被淹沒,概率小了搜索會停滯。
(5)變異:按照變異概率(pm)進行變異。變異首先在群體中隨機選擇一個個體,對於選中的個體以一定的概率隨機地改變串結構數據中某個串的值。同生物界一樣,GA中變異發生的概率很低。變異為新個體的產生提供了機會。
變異可以防止有效基因的缺損造成的進化停滯。比較低的變異概率就已經可以讓基因不斷變更,太大了會陷入隨機搜索。想一下,生物界每一代都和上一代差距很大,會是怎樣的可怕情形。
就像自然界的變異適和任何物種一樣,對變數進行了編碼的遺傳演算法沒有考慮函數本身是否可導,是否連續等性質,所以適用性很強;並且,它開始就對一個種群進行操作,隱含了並行性,也容易找到「全局最優解」。 為了找到「全局最優解」,就不應該執著於某一個特定的區域。局部搜索的缺點就是太貪婪地對某一個局部區域以及其鄰域搜索,導致一葉障目,不見泰山。禁忌搜索就是對於找到的一部分局部最優解,有意識地避開它(但不是完全隔絕),從而獲得更多的搜索區間。兔子們找到了泰山,它們之中的一隻就會留守在這里,其他的再去別的地方尋找。就這樣,一大圈後,把找到的幾個山峰一比較,珠穆朗瑪峰脫穎而出。
當兔子們再尋找的時候,一般地會有意識地避開泰山,因為他們知道,這里已經找過,並且有一隻兔子在那裡看著了。這就是禁忌搜索中「禁忌表(tabu list)」的含義。那隻留在泰山的兔子一般不會就安家在那裡了,它會在一定時間後重新回到找最高峰的大軍,因為這個時候已經有了許多新的消息,泰山畢竟也有一個不錯的高度,需要重新考慮,這個歸隊時間,在禁忌搜索裡面叫做「禁忌長度(tabu length)」;如果在搜索的過程中,留守泰山的兔子還沒有歸隊,但是找到的地方全是華北平原等比較低的地方,兔子們就不得不再次考慮選中泰山,也就是說,當一個有兔子留守的地方優越性太突出,超過了「best to far」的狀態,就可以不顧及有沒有兔子留守,都把這個地方考慮進來,這就叫「特赦准則(aspiration criterion)」。這三個概念是禁忌搜索和一般搜索准則最不同的地方,演算法的優化也關鍵在這里。
偽碼表達:
procere tabu search;
begin
initialize a string vc at random,clear up the tabu list;
cur:=vc;
repeat
select a new string vn in the neighborhood of vc;
if va>best_to_far then {va is a string in the tabu list}
begin
cur:=va;
let va take place of the oldest string in the tabu list;
best_to_far:=va;
end else
begin
cur:=vn;
let vn take place of the oldest string in the tabu list;
end;
until (termination-condition);
end;
以上程序中有關鍵的幾點:
(1)禁忌對象:可以選取當前的值(cur)作為禁忌對象放進tabu list,也可以把和當然值在同一「等高線」上的都放進tabu list。
(2)為了降低計算量,禁忌長度和禁忌表的集合不宜太大,但是禁忌長度太小容易循環搜索,禁忌表太小容易陷入「局部極優解」。
(3)上述程序段中對best_to_far的操作是直接賦值為最優的「解禁候選解」,但是有時候會出現沒有大於best_to_far的,候選解也全部被禁的「死鎖」狀態,這個時候,就應該對候選解中最佳的進行解禁,以能夠繼續下去。
(4)終止准則:和模擬退火,遺傳演算法差不多,常用的有:給定一個迭代步數;設定與估計的最優解的距離小於某個范圍時,就終止搜索;當與最優解的距離連續若干步保持不變時,終止搜索;
禁忌搜索是對人類思維過程本身的一種模擬,它通過對一些局部最優解的禁忌(也可以說是記憶)達到接納一部分較差解,從而跳出局部搜索的目的。 人工神經網路(Artificial Neural Network,ANN)
神經網路從名字就知道是對人腦的模擬。它的神經元結構,它的構成與作用方式都是在模仿人腦,但是也僅僅是粗糙的模仿,遠沒有達到完美的地步。和馮·諾依曼機不同,神經網路計算非數字,非精確,高度並行,並且有自學習功能。
生命科學中,神經細胞一般稱作神經元,它是整個神經結構的最基本單位。每個神經細胞就像一條胳膊,其中像手掌的地方含有細胞核,稱作細胞體,像手指的稱作樹突,是信息的輸入通路,像手臂的稱作軸突,是信息的輸出通路;神經元之間錯綜復雜地連在一起,互相之間傳遞信號,而傳遞的信號可以導致神經元電位的變化,一旦電位高出一定值,就會引起神經元的激發,此神經元就會通過軸突傳出電信號。
而如果要用計算機模仿生物神經,就需要人工的神經網路有三個要素:(1)形式定義人工神經元;(2)給出人工神經元的連接方式,或者說給出網路結構;(3)給出人工神經元之間信號強度的定義。
歷史上第一個人工神經網路模型稱作M-P模型,非常簡單:
其中,表示神經元i在t時刻的狀態,為1表示激發態,為0表示抑制態;是神經元i和j之間的連接強度;表示神經元i的閾值,超過這個值神經元才能激發。
這個模型是最簡單的神經元模型。但是功能已經非常強大:此模型的發明人McCulloch和Pitts已經證明,不考慮速度和實現的復雜性,它可以完成當前數字計算機的任何工作。
以上這個M-P模型僅僅是一層的網路,如果從對一個平面進行分割的方面來考慮的話,M-P網路只能把一個平面分成個半平面,卻不能夠選取特定的一部分。而解決的辦法就是「多層前向網路」。
為了讓這種網路有合適的權值,必須給網路一定的激勵,讓它自己學習,調整。一種方法稱作「向後傳播演算法(Back Propagation,BP)」,其基本思想是考察最後輸出解和理想解的差異,調整權值,並把這種調整從輸出層開始向後推演,經過中間層,達到輸入層。
可見,神經網路是通過學習來達到解決問題的目的,學習沒有改變單個神經元的結構和工作方式,單個神經元的特性和要解決的問題之間也沒有直接聯系,這里學習的作用是根據神經元之間激勵與抑制的關系,改變它們的作用強度。學習樣本中的任何樣品的信息都包含在網路的每個權值之中。
BP演算法中有考察輸出解和理想解差異的過程,假設差距為w,則調整權值的目的就是為了使得w最小化。這就又包含了前文所說的「最小值」問題。一般的BP演算法採用的是局部搜索,比如最速下降法,牛頓法等,當然如果想要得到全局最優解,可以採用模擬退火,遺傳演算法等。當前向網路採用模擬退火演算法作為學習方法的時候,一般成為「波爾茲曼網路」,屬於隨機性神經網路。
在學習BP演算法學習的過程中,需要已經有一部分確定的值作為理想輸出,這就好像中學生在學習的時候,有老師的監督。如果沒有了監督,人工神經網路該怎麼學習?
就像沒有了宏觀調控,自由的市場引入了競爭一樣,有一種學習方法稱作「無監督有競爭的學習」。在輸入神經元i的若干個神經元之間開展競爭,競爭之後,只有一個神經元為1,其他均為0,而對於失敗的神經元,調整使得向對競爭有利的方向移動,則最終也可能在一次競爭中勝利;
人工神經網路還有反饋網路如Hopfield網路,它的神經元的信號傳遞方向是雙向的,並且引入一個能量函數,通過神經元之間不斷地相互影響,能量函數值不斷下降,最後能給出一個能量比較低的解。這個思想和模擬退火差不多。
人工神經網路應用到演算法上時,其正確率和速度與軟體的實現聯系不大,關鍵的是它自身的不斷學習。這種思想已經和馮·諾依曼模型很不一樣。 粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源於對鳥群捕食的行為研究 。該演算法最初是受到飛鳥集群活動的規律性啟發,進而利用群體智能建立的一個簡化模型。粒子群演算法在對動物集群活動行為觀察基礎上,利用群體中的個體對信息的共享使整個群體的運動在問題求解空間中產生從無序到有序的演化過程,從而獲得最優解。
PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。但是它沒有遺傳演算法用的交叉(crossover)以及變異(mutation),而是粒子在解空間追隨最優的粒子進行搜索。同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域。
PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。
PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。
PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個極值來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 模擬退火,遺傳演算法,禁忌搜索,神經網路在解決全局最優解的問題上有著獨到的優點,並且,它們有一個共同的特點:都是模擬了自然過程。模擬退火思路源於物理學中固體物質的退火過程,遺傳演算法借鑒了自然界優勝劣汰的進化思想,禁忌搜索模擬了人類有記憶過程的智力過程,神經網路更是直接模擬了人腦。
它們之間的聯系也非常緊密,比如模擬退火和遺傳演算法為神經網路提供更優良的學習演算法提供了思路。把它們有機地綜合在一起,取長補短,性能將更加優良。
這幾種智能演算法有別於一般的按照圖靈機進行精確計算的程序,尤其是人工神經網路,是對計算機模型的一種新的詮釋,跳出了馮·諾依曼機的圈子,按照這種思想來設計的計算機有著廣闊的發展前景

Ⅲ 各種編程語言的深度學習庫整理大全!

各種編程語言的深度學習庫整理大全!
python1. Theano是一個python類庫,用數組向量來定義和計算數學表達式。它使得在Python環境下編寫深度學習演算法變得簡單。在它基礎之上還搭建了許多類庫。
1.Keras是一個簡潔、高度模塊化的神經網路庫,它的設計參考了Torch,用Python語言編寫,支持調用GPU和CPU優化後的Theano運算。
2.Pylearn2是一個集成大量深度學習常見模型和訓練演算法的庫,如隨機梯度下降等。它的功能庫都是基於Theano之上。
3.Lasagne是一個搭建和訓練神經網路的輕量級封裝庫,基於Theano。它遵循簡潔化、透明化、模塊化、實用化和專一化的原則。
4.Blocks也是一個基於Theano的幫助搭建神經網路的框架。
2. Caffe是深度學習的框架,它注重於代碼的表達形式、運算速度以及模塊化程度。它是由伯克利視覺和學習中心(Berkeley Vision and Learning Center, BVLC)以及社區成員共同開發。谷歌的DeepDream項目就是基於Caffe框架完成。這個框架是使用BSD許可證的C++庫,並提供了Python調用介面。
3. nolearn囊括了大量的現有神經網路函數庫的封裝和抽象介面、大名鼎鼎的Lasagne以及一些機器學習的常用模塊。
4. Genism也是一個用Python編寫的深度學習小工具,採用高效的演算法來處理大規模文本數據。
5. Chainer在深度學習的理論演算法和實際應用之間架起一座橋梁。它的特點是強大、靈活、直觀,被認為是深度學習的靈活框架。
6. deepnet是基於GPU的深度學習演算法函數庫,使用Python語言開發,實現了前饋神經網路(FNN)、受限玻爾茲曼機(RBM)、深度信念網路(DBN)、自編碼器(AE)、深度玻爾茲曼機(DBM)和卷積神經網路(CNN)等演算法。
7. Hebel也是深度學習和神經網路的一個Python庫,它通過pyCUDA控制支持CUDA的GPU加速。它實現了最重要的幾類神經網路模型,提供了多種激活函數和模型訓練方法,例如momentum、Nesterov momentum、dropout、和early stopping等方法。
8. CXXNET是一個基於MShadow開發的快速、簡潔的分布式深度學習框架。它是一個輕量級、易擴展的C++/CUDA神經網路工具箱,提供友好的Python/Matlab介面來進行訓練和預測。
9. DeepPy是基於NumPy的深度學習框架。
10. DeepLearning是一個用C++和Python共同開發的深度學習函數庫。
11. Neon是Nervana System 的深度學習框架,使用Python開發。
Matlab
1. ConvNet 卷積神經網路是一類深度學習分類演算法,它可以從原始數據中自主學習有用的特徵,通過調節權重值來實現。
2. DeepLearnToolBox是用於深度學習的Matlab/Octave工具箱,它包含深度信念網路(DBN)、棧式自編碼器(stacked AE)、卷積神經網路(CNN)等演算法。
3. cuda-convet是一套卷積神經網路(CNN)代碼,也適用於前饋神經網路,使用C++/CUDA進行運算。它能對任意深度的多層神經網路建模。只要是有向無環圖的網路結構都可以。訓練過程採用反向傳播演算法(BP演算法)。
4. MatConvNet是一個面向計算機視覺應用的卷積神經網路(CNN)Matlab工具箱。它簡單高效,能夠運行和學習最先進的機器學習演算法。
CPP
1. eblearn是開源的機器學習C++封裝庫,由Yann LeCun主導的紐約大學機器學習實驗室開發。它用基於能量的模型實現卷積神經網路,並提供可視化交互界面(GUI)、示例以及示範教程。
2. SINGA是Apache軟體基金會支持的一個項目,它的設計目標是在現有系統上提供通用的分布式模型訓練演算法。
3. NVIDIA DIGITS是用於開發、訓練和可視化深度神經網路的一套新系統。它把深度學習的強大功能用瀏覽器界面呈現出來,使得數據科學家和研究員可以實時地可視化神經網路行為,快速地設計出最適合數據的深度神經網路。
4. Intel? Deep Learning Framework提供了Intel?平台加速深度卷積神經網路的一個統一平台。
Java
1. N-Dimensional Arrays for Java (ND4J) 是JVM平台的科學計算函數庫。它主要用於產品中,也就是說函數的設計需求是運算速度快、存儲空間最省。
2. Deeplearning4j 是第一款商業級別的開源分布式深度學習類庫,用Java和Scala編寫。它的設計目的是為了在商業環境下使用,而不是作為一款研究工具。
3. Encog是一個機器學習的高級框架,涵蓋支持向量機、人工神經網路、遺傳編程、貝葉斯網路、隱馬可夫模型等,也支持遺傳演算法。
JavaScript
1. Convnet.js 由JavaScript編寫,是一個完全在瀏覽器內完成訓練深度學習模型(主要是神經網路)的封裝庫。不需要其它軟體,不需要編譯器,不需要安裝包,不需要GPU,甚至不費吹灰之力。
Lua
1. Torch是一款廣泛適用於各種機器學習演算法的科學計算框架。它使用容易,用快速的腳本語言LuaJit開發,底層是C/CUDA實現。Torch基於Lua編程語言。
Julia
1. Mocha是Julia的深度學習框架,受C++框架Caffe的啟發。Mocha中通用隨機梯度求解程序和通用模塊的高效實現,可以用來訓練深度/淺層(卷積)神經網路,可以通過(棧式)自編碼器配合非監督式預訓練(可選)完成。它的優勢特性包括模塊化結構、提供上層介面,可能還有速度、兼容性等更多特性。
Lisp
1. Lush(Lisp Universal Shell)是一種面向對象的編程語言,面向對大規模數值和圖形應用感興趣的廣大研究員、實驗員和工程師們。它擁有機器學習的函數庫,其中包含豐富的深度學習庫。
Haskell
1. DNNGraph是Haskell用於深度神經網路模型生成的領域特定語言(DSL)。
.NET
1. Accord.NET 是完全用C#編寫的.NET機器學習框架,包括音頻和圖像處理的類庫。它是產品級的完整框架,用於計算機視覺、計算機音頻、信號處理和統計應用領域。
R
1. darch包可以用來生成多層神經網路(深度結構)。訓練的方法包括了對比散度的預訓練和眾所周知的訓練演算法(如反向傳播法或共軛梯度法)的細調。
2. deepnet實現了許多深度學習框架和神經網路演算法,包括反向傳播(BP)、受限玻爾茲曼機(RBM)、深度信念網路(DBP)、深度自編碼器(Deep autoencoder)等等。

Ⅳ BP神經網路的原理的BP什麼意思

原文鏈接:http://tecdat.cn/?p=19936

在本教程中,您將學習如何在R語言中創建神經網路模型。

神經網路(或人工神經網路)具有通過樣本進行學習的能力。人工神經網路是一種受生物神經元系統啟發的信息處理模型。它由大量高度互連的處理元件(稱為神經元)組成,以解決問題。它遵循非線性路徑,並在整個節點中並行處理信息。神經網路是一個復雜的自適應系統。自適應意味著它可以通過調整輸入權重來更改其內部結構。

該神經網路旨在解決人類容易遇到的問題和機器難以解決的問題,例如識別貓和狗的圖片,識別編號的圖片。這些問題通常稱為模式識別。它的應用范圍從光學字元識別到目標檢測。

本教程將涵蓋以下主題:

閱讀全文

與bp演算法屬於有師還是無師相關的資料

熱點內容
mac壓縮pdf大小 瀏覽:706
蘋果新手機激活無法連接伺服器地址 瀏覽:330
dvd遙控編程器 瀏覽:926
阿里雲的雲伺服器在哪裡下載 瀏覽:442
linuxphpcpu 瀏覽:532
單片機交通信號燈課程設計 瀏覽:384
linuxusb識別u盤 瀏覽:391
找對象app名稱是什麼 瀏覽:162
為什麼選擇童程童美學習編程 瀏覽:742
db2runstats命令 瀏覽:849
matlab怎麼用遺傳演算法 瀏覽:809
程序員喜歡黑色背景 瀏覽:590
音頻信號需要什麼樣的單片機 瀏覽:676
剪力牆牆柱箍筋是否需要加密 瀏覽:165
如何查看伺服器上埠是否打開 瀏覽:298
目前流行編程語言 瀏覽:458
騰訊雲伺服器免流嗎 瀏覽:850
c命令行解析 瀏覽:788
解壓轉移注意力最好的辦法 瀏覽:916
多人協作php 瀏覽:920