導航:首頁 > 源碼編譯 > matlab怎麼用遺傳演算法

matlab怎麼用遺傳演算法

發布時間:2025-01-02 19:22:29

『壹』 在matlab中如何用遺傳演算法求極值

matlab有遺傳演算法工具箱。

核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數
【輸出參數】
pop--生成的初始種群
【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數
【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡
【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如['maxGenTerm']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如['normGeomSelect']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如['arithXover heuristicXover simpleXover']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]

注意】matlab工具箱函數必須放在工作目錄下
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下

initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代

運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)

註:遺傳演算法一般用來取得近似最優解,而不是最優解。

遺傳演算法實例2

【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')

註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055

大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。

『貳』 求解:怎樣使用MATLAB中的遺傳演算法計算器Optimization Tool中的GA——Genetic Algorithm,如圖,重謝

比如通過MATLAB遺傳演算法的思想求解f(x)=x*sin(10pi*x)+2.0,-1<=x<=2的最大值問題,結果精確到3位小數。

首先在matlab命令窗口輸入f=@(x)-(x*sin(10*pi*x)+2) 輸出結果為

>> f=@(x)-(x*sin(10*pi*x)+2)

f =

@(x)-(x*sin(10*pi*x)+2)

接著輸入gatool會打開遺傳演算法工具箱

顯示51代之後演算法終止,最小結果為-3.85027334719567,對應的x為1.851,由於自定義函數加了負號,所以原式的最大值為3.85027334719567,對應的x為1.851。

不過這是遺傳演算法得到的結果,每次運行的結果可能會有所不同,而且不一定是確切的最大值。

遺傳演算法適合應用在一些求最優解比較復雜的問題(常規的演算法運算時間過長,甚至無法解決)。

閱讀全文

與matlab怎麼用遺傳演算法相關的資料

熱點內容
中國銀行程序員加班嗎 瀏覽:520
重命名如何轉換文件夾 瀏覽:768
伺服器賬號怎麼做 瀏覽:860
android訪問api 瀏覽:890
app製作網站源碼 瀏覽:975
社保pdf 瀏覽:159
php條件顯示 瀏覽:322
安卓玩什麼軟體好 瀏覽:129
java如何導出 瀏覽:22
俱樂部源碼棋牌 瀏覽:355
印度的19乘19演算法 瀏覽:195
中國移動app專屬流量如何取消 瀏覽:669
駕考app題庫怎麼導出來 瀏覽:682
與網頁伺服器連接發送什麼代碼 瀏覽:373
沒有伺服器怎麼弄博客 瀏覽:581
如何用vc編譯c語言 瀏覽:327
PDF下載的文件 瀏覽:505
常熟電信程序員有編制嗎 瀏覽:152
前端c語言編譯工具 瀏覽:82
eclipse編譯java程序 瀏覽:859