在終端中輸入 gcc 文件名 -o 目標文件名
然後 ./目標文件名 就行了,沒有目標文件名,自動存為 a
執行 ./a 就行了。
在使用Gcc編譯器的時候,我們必須給出一系列必要的調用參數和文件名稱。GCC編譯器的調用參數大約有100多個,其中多數參數我們可能根本就用不到,這里只介紹其中最基本、最常用的參數。
GCC最基本的用法是∶gcc [options] [filenames]
其中options就是編譯器所需要的參數,filenames給出相關的文件名稱。
-c,只編譯,不連接成為可執行文件,編譯器只是由輸入的.c等源代碼文件生成.o為後綴的目標文件,通常用於編譯不包含主程序的子程序文件。
-o output_filename,確定輸出文件的名稱為output_filename,同時這個名稱不能和源文件同名。如果不給出這個選項,gcc就給出預設的可執行文件a.out。
-g,產生符號調試工具(GNU的gdb)所必要的符號資訊,要想對源代碼進行調試,我們就必須加入這個選項。
-O,對程序進行優化編譯、連接,採用這個選項,整個源代碼會在編譯、連接過程中進行優化處理,這樣產生的可執行文件的執行效率可以提高,但是,編譯、連接的速度就相應地要慢一些。
-O2,比-O更好的優化編譯、連接,當然整個編譯、連接過程會更慢。
-Idirname,將dirname所指出的目錄加入到程序頭文件目錄列表中,是跡行運在預編譯過程中使用的參數。C程序中的頭文件包含兩種情況∶
A)#include <myinc.h>
B)#include 「myinc.h」
其中,A類使用尖括弧(< >),B類使用雙引號(「 」)。對於A類,預處理程序cpp在系統預設包含文件目錄(如/usr/include)中搜尋相應的文件,而B類,預處理程序在目姿梁標文件的文件夾內搜索相應文件。
GCC執行過程示例
示例代碼 a.c:
#include <stdio.h>
int main()
{
printf("hello\n");
}
預編譯過程:
這個過程處理宏定義和include,並做語法檢查。
可以看到預編譯後,代碼從5行擴帶旦展到了910行。
gcc -E a.c -o a.i
cat a.c | wc -l
5
cat a.i | wc -l
910
編譯過程:
這個階段,生成匯編代碼。
gcc -S a.i -o a.s
cat a.s | wc -l
59
匯編過程:
這個階段,生成目標代碼。
此過程生成ELF格式的目標代碼。
gcc -c a.s -o a.o
file a.o
a.o: ELF 64-bit LSB relocatable, AMD x86-64, version 1 (SYSV), not stripped
鏈接過程:
鏈接過程。生成可執行代碼。鏈接分為兩種,一種是靜態鏈接,另外一種是動態鏈接。使用靜態鏈接的好處是,依賴的動態鏈接庫較少,對動態鏈接庫的版本不會很敏感,具有較好的兼容性;缺點是生成的程序比較大。使用動態鏈接的好處是,生成的程序比較小,佔用較少的內存。
gcc a.o -o a
程序運行:
./a
hello
編輯本段
GCC編譯簡單例子
編寫如下代碼:
#include <stdio.h>
int main()
{
printf("hello,world!\n");
}
執行情況如下:
gcc -E hello.c -o hello.i
gcc -S hello.i -o hello.s
gcc -c hello.s -o hello.o
gcc hello.c -o hello
./hello
hello,world!
❷ linux中make makefiles這個命令是什麼意思
無論是在Linux還是在Unix環境中,make都是一個非常重要的編譯命令。不管是自己進行項目開發還是安裝應用軟體,我們都經常要用到
make或make
install。利用make工具,我們可以將大型的開發項目分解成為多個更易於管理的模塊,對於一個包括幾百個源文件的應用程序,使用make和
makefile工具就可以簡潔明快地理順各個源文件之間紛繁復雜的相互關系。而且如此多的源文件,如果每次都要鍵入gcc命令進行編譯的話,那對程序員
來說簡直就是一場災難。而make工具則可自動完成編譯工作,並且可以只對程序員在上次編譯後修改過的部分進行編譯。因此,有效的利用make和
makefile工具可以大大提高項目開發的效率。同時掌握make和makefile之後,您也不會再面對著Linux下的應用軟體手足無措了。
但令人遺憾的是,在許多講述Linux應用的書籍上都沒有詳細介紹這個功能強大但又非常復雜的編譯工具。在這里我就向大家詳細介紹一下make及其描述文件
makefile。
Makefile文件
Make工具最主要也是最基本的功能就是通過makefile文件來描述源程序之間的相互關系並自動維護編譯工作。而makefile 文件需要按照某種語法進行編寫,文件
中
需要說明如何編譯各個源文件並連接生成可執行文件,並要求定義源文件之間的依賴關系。makefile 文件是許多編譯器--包括 Windows NT
下的編譯器--維護編譯信息的常用方法,只是在集成開發環境中,用戶通過友好的界面修改 makefile 文件而已。
在 UNIX 系統中,習慣使用 Makefile 作為 makfile 文件。如果要使用其他文件作為 makefile,則可利用類似下面的 make 命令選項指定 makefile 文件:
$ make -f Makefile.debug
例如,一個名為prog的程序由三個C源文件filea.c、fileb.c和filec.c以及庫文件LS編譯生成,這三個文件還分別包含自
己的頭文件a.h
、b.h和c.h。通常情況下,C編譯器將會輸出三個目標文件filea.o、fileb.o和filec.o。假設filea.c和fileb.c都要
聲明用到一個名為defs的文件,但filec.c不用。即在filea.c和fileb.c里都有這樣的聲明:
#include "defs"
那麼下面的文檔就描述了這些文件之間的相互聯系:
#It is a example for describing makefile
prog : filea.o fileb.o filec.o
cc filea.o fileb.o filec.o -LS -o prog
filea.o : filea.c a.h defs
cc -c filea.c
fileb.o : fileb.c b.h defs
cc -c fileb.c
filec.o : filec.c c.h
cc -c filec.c
這個描述文檔就是一個簡單的makefile文件。
從上面的例子注意到,第一個字元為 # 的行為注釋行。第一個非注釋行指定prog由三個目標文件filea.o、fileb.o和filec.o鏈接生成。第三行描述了如何從prog所依賴的文件建立可執行文件。接下來的4、6、8行分別指定三個目標文件,以及它們所依賴的.c和.h文件以及defs文件。而5、7、9行則指定了如何從目標所依賴的文
件建立目標。
當filea.c或a.h文件在編譯之後又被修改,則 make 工具可自動重新編譯filea.o,如果在前後兩次編譯之間,filea.C 和a.h 均沒有被修改,而且 test.o 還存在的話,就沒有必要重新編譯。這種依賴關系在多源文件的程序編譯中尤其重要。通過這種依賴關系的定義,make 工具可避免許多不必要的編譯工作。當然,利用 Shell
腳本也可以達到自動編譯的效果,但是,Shell 腳本將全部編譯任何源文件,包括哪些不必要重新編譯的源文件,而 make 工具則可根據目標上一次編譯的時間和目標所依賴的源文件的更新時間而自動判斷應當編譯哪個源文件。
Makefile文件作為一種描述文檔一般需要包含以下內容:
◆ 宏定義
◆ 源文件之間的相互依賴關系
◆ 可執行的命令
Makefile中允許使用簡單的宏指代源文件及其相關編譯信息,在Linux中也稱宏為變數。在引用宏時只需在變數前加$符號,但值得注意的是,如果變數名的長度超過一個字元,在引用時就必須加圓括弧()。下面都是有效的宏引用:
$(CFLAGS)
$2
$Z
$(Z)
其中最後兩個引用是完全一致的。需要注意的是一些宏的預定義變數,在Unix系統中,$*、$@、$?和$<四個特殊宏的值在執行命令的過程中會發生相應的變化,而在GNU make中則定義了更多的預定義變數。關於預定義變數的詳細內容,宏定義的使用可以使我們脫離那些冗長乏味的編譯選項,為編寫makefile文
件帶來很大的方便。
# Define a macro for the object files
OBJECTS= filea.o fileb.o filec.o
# Define a macro for the library file
LIBES= -LS
# use macros rewrite makefile
prog: $(OBJECTS)
cc $(OBJECTS) $(LIBES) -o prog
……
此時如果執行不帶參數的make命令,將連接三個目標文件和庫文件LS;但是如果在make命令後帶有新的宏定義:
make "LIBES= -LL -LS"
則命令行後面的宏定義將覆蓋makefile文件中的宏定義。若LL也是庫文件,此時make命令將連接三個目標文件以及兩個庫文件LS和LL。
在Unix系統中沒有對常量NULL作出明確的定義,因此我們要定義NULL字元串時要使用下述宏定義:
STRINGNAME=
Make命令
在make命令後不僅可以出現宏定義,還可以跟其他命令行參數,這些參數指定了需要編譯的目標文件。其標准形式為:
target1 [target2 …]:[:][dependent1 …][;commands][#…]
[(tab) commands][#…]
方括弧中間的部分表示可選項。Targets和dependents當中可以包含字元、數字、句點和"/"符號。除了引用,commands中不能含有"#",也不允許換行。
在通常的情況下命令行參數中只含有一個":",此時command序列通常和makefile文件中某些定義文件間依賴關系的描述行有關。如果與目標相關連的那些描述行指定了相關的command序列,那麼就執行這些相關的command命令,即使在分號和(tab)後面的aommand欄位甚至有可能是NULL。如果那些與目標相關連的行沒有指定command,那麼將調用系統默認的目標文件生成規則。
如果命令行參數中含有兩個冒號"::",則此時的command序列也許會和makefile中所有描述文件依賴關系的行有關。此時將執行那些與目標相關連的描述行所
指向的相關命令。同時還將執行build-in規則。
如果在執行command命令時返回了一個非"0"的出錯信號,例如makefile文件中出現了錯誤的目標文件名或者出現了以連字元打頭的命令字元串,make操作一般會就此終止,但如果make後帶有"-i"參數,則make將忽略此類出錯信號。
Make命本身可帶有四種參數:標志、宏定義、描述文件名和目標文件名。其標准形式為:
Make [flags] [macro definitions] [targets]
Unix系統下標志位flags選項及其含義為:
-f file 指定file文件為描述文件,如果file參數為"-"符,那麼描述文件指向標准輸入。如果沒有"-f"參數,則系統將默認當前目錄下名為makefile或者名為Makefile的文件為描述文件。在Linux中, GNU make 工具在當前工作目錄中按照GNUmakefile、makefile、Makefile的順序搜索 makefile文件。
-i 忽略命令執行返回的出錯信息。
-s 沉默模式,在執行之前不輸出相應的命令行信息。
-r 禁止使用build-in規則。
-n 非執行模式,輸出所有執行命令,但並不執行。
-t 更新目標文件。
-q make操作將根據目標文件是否已經更新返回"0"或非"0"的狀態信息。
-p 輸出所有宏定義和目標文件描述。
-d Debug模式,輸出有關文件和檢測時間的詳細信息。
Linux下make標志位的常用選項與Unix系統中稍有不同,下面我們只列出了不同部分:
-c dir 在讀取 makefile 之前改變到指定的目錄dir。
-I dir 當包含其他 makefile文件時,利用該選項指定搜索目錄。
-h help文擋,顯示所有的make選項。
-w 在處理 makefile 之前和之後,都顯示工作目錄。
通過命令行參數中的target ,可指定make要編譯的目標,並且允許同時定義編譯多個目標,操作時按照從左向右的順序依次編譯target選項中指定的目標文件。如果命令行中沒有指定目標,則系統默認target指向描述文件中第一個目標文件。
通常,makefile 中還定義有 clean 目標,可用來清除編譯過程中的中間文件,例如:
clean:
rm -f *.o
運行 make clean 時,將執行 rm -f *.o 命令,最終刪除所有編譯過程中產生的所有中間文件。
隱含規則
在make 工具中包含有一些內置的或隱含的規則,這些規則定義了如何從不同的依賴文件建立特定類型的目標。Unix系統通常支持一種基於文件擴展名即文件名後綴的隱含規則。這種後綴規則定義了如何將一個具有特定文件名後綴的文件(例如.c文件),轉換成為具有另一種文件名後綴的文件(例如.o文件):
.c:.o
$(CC) $(CFLAGS) $(CPPFLAGS) -c -o $@ $<
系統中默認的常用文件擴展名及其含義為:
.o 目標文件
.c C源文件
.f FORTRAN源文件
.s 匯編源文件
.y Yacc-C源語法
.l Lex源語法
在早期的Unix系統系統中還支持Yacc-C源語法和Lex源語法。在編譯過程中,系統會首先在makefile文件中尋找與目標文件相關的.C文件,如果還有與之相依賴的.y和.l文件,則首先將其轉換為.c文件後再編譯生成相應的.o文件;如果沒有與目標相關的.c文件而只有相關的.y文件,則系統將直接編譯.y文件。
而GNU make 除了支持後綴規則外還支持另一種類型的隱含規則--模式規則。這種規則更加通用,因為可以利用模式規則定義更加復雜的依賴性規則。模式規則看起來非常類似於正則規則,但在目標名稱的前面多了一個 % 號,同時可用來定義目標和依賴文件之間的關系,例如下面的模式規則定義了如何將任意一個 file.c 文件轉換為 file.o 文件:
%.c:%.o
$(CC) $(CFLAGS) $(CPPFLAGS) -c -o $@ $<
#EXAMPLE#
下面將給出一個較為全面的示例來對makefile文件和make命令的執行進行進一步的說明,其中make命令不僅涉及到了C源文件還包括了Yacc語法。本例選自"Unix
Programmer's Manual 7th Edition, Volume 2A" Page 283-284
下面是描述文件的具體內容:
#Description file for the Make command
#Send to print
P=und -3 | opr -r2
#The source files that are needed by object files
FILES= Makefile version.c defs main.c donamc.c misc.c file.c \
dosys.c gram.y lex.c gcos.c
#The definitions of object files
OBJECTS= vesion.o main.o donamc.o misc.o file.o dosys.o gram.o
LIBES= -LS
LINT= lnit -p
CFLAGS= -O
make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make
size make
$(OBJECTS): defs
gram.o: lex.c
cleanup:
-rm *.o gram.c
install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make
#print recently changed files
print: $(FILES)
pr $? | $P
touch print
test:
make -dp | grep -v TIME>1zap
/usr/bin/make -dp | grep -v TIME>2zap
diff 1zap 2zap
rm 1zap 2zap
lint: dosys.c donamc.c file.c main.c misc.c version.c gram.c
$(LINT) dosys.c donamc.c file.c main.c misc.c version.c \
gram.c
rm gram.c
arch:
ar uv /sys/source/s2/make.a $(FILES)
通常在描述文件中應象上面一樣定義要求輸出將要執行的命令。在執行了make命令之後,輸出結果為:
$ make
cc -c version.c
cc -c main.c
cc -c donamc.c
cc -c misc.c
cc -c file.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.o donamc.o misc.o file.o dosys.o gram.o \
-LS -o make
13188+3348+3044=19580b=046174b
最後的數字信息是執行"@size make"命令的輸出結果。之所以只有輸出結果而沒有相應的命令行,是因為"@size make"命令以"@"起始,這個符號禁止列印輸出它所在的命令行。
描述文件中的最後幾條命令行在維護編譯信息方面非常有用。其中"print"命令行的作用是列印輸出在執行過上次"make print"命令後所有改動過的文件名稱。系
統使用一個名為print的0位元組文件來確定執行print命令的具體時間,而宏$?則指向那些在print文件改動過之後進行修改的文件的文件名。如果想要指定執行print命令後,將輸出結果送入某個指定的文件,那麼就可修改P的宏定義:
make print "P= cat>zap"
在Linux中大多數軟體提供的是源代碼,而不是現成的可執行文件,這就要求用戶根據自己系統的實際情況和自身的需要來配置、編譯源程序後,軟體才能使用。只有掌握了make工具,才能讓我們真正享受到到Linux這個自由軟體世界的帶給我們無窮樂趣。
❸ linux終端下如何進行C語言編譯
1、首先在linux下判斷是否安裝gcc編譯器,直接執行:gcc -v,判斷是否安裝gcc。
❹ linux杞浠跺紑鍙戞椂緇檊cc鎸囧畾澶存枃浠跺拰搴撴枃浠惰礬寰勭殑鏂規硶
鍦↙inux 涓嬪紑鍙戣蔣浠舵椂錛屽畬鍏ㄤ笉浣跨敤絎涓夋柟鍑芥暟搴撶殑鎯呭喌鏄姣旇緝灝戣佺殑錛岄氬父鏉ヨ查兘闇瑕佸熷姪涓涓鎴栧氫釜鍑芥暟搴撶殑鏀鎸佹墠鑳藉熷畬鎴愮浉搴旂殑鍔熻兘銆備粠紼嬪簭鍛樼殑瑙掑害鐪嬶紝鍑芥暟搴撳疄 闄呬笂灝辨槸涓浜涘ご鏂囦歡錛.h錛夊拰搴撴枃浠訛紙.so鎴栬.a錛夌殑闆嗗悎銆傝櫧鐒禠inux涓嬬殑澶у氭暟鍑芥暟閮介粯璁ゅ皢澶存枃浠舵斁鍒/usr/include/鐩褰曚笅錛岃屽簱 鏂囦歡鍒欐斁鍒/usr/lib/鐩褰曚笅錛屼絾騫朵笉鏄鎵鏈夌殑鎯呭喌閮芥槸榪欐牱銆傛e洜濡傛わ紝GCC鍦ㄧ紪璇戞椂蹇呴』鏈夎嚜宸辯殑鍔炴硶鏉ユ煡鎵炬墍闇瑕佺殑澶存枃浠跺拰搴撴枃浠躲
GCC閲囩敤鎼滅儲鐩褰曠殑鍔炴硶鏉ユ煡鎵炬墍闇瑕佺殑鏂囦歡錛-I 閫夐」鍙浠ュ悜GCC鐨勫ご鏂囦歡鎼滅儲璺寰勪腑娣誨姞鏂扮殑鐩褰曘備緥濡傦紝濡傛灉鍦/home/xiaowp/include/鐩褰曚笅鏈夌紪璇戞椂鎵闇瑕佺殑澶存枃浠訛紝涓轟簡璁〨CC鑳藉熼『鍒╁湴鎵懼埌瀹冧滑錛屽氨鍙浠ヤ嬌鐢-I閫夐」
鍚屾牱錛屽傛灉浣跨敤浜嗕笉鍦ㄦ爣鍑嗕綅緗鐨勫簱鏂囦歡錛岄偅涔堝彲浠ラ氳繃-L閫夐」鍚慓CC鐨勫簱鏂囦歡鎼滅儲璺寰勪腑娣誨姞鏂扮殑鐩褰曘備緥濡傦紝濡傛灉鍦/home/xiaowp/lib/鐩褰曚笅鏈夐摼鎺ユ椂鎵闇瑕佺殑搴撴枃浠秎ibfoo.so錛屼負浜嗚〨CC鑳藉熼『鍒╁湴鎵懼埌瀹冿紝鍙浠ヤ嬌鐢ㄤ笅闈㈢殑鍛戒護錛
鍊煎緱濂藉ソ瑙i噴涓涓嬬殑鏄-l閫夐」錛屽畠鎸囩ずGCC鍘昏繛鎺ュ簱鏂囦歡libfoo.so銆侺inux涓 鐨勫簱鏂囦歡鍦ㄥ懡鍚嶆椂鏈変竴涓綰﹀畾錛岄偅灝辨槸搴旇ヤ互lib涓変釜瀛楁瘝寮澶達紝鐢變簬鎵鏈夌殑搴撴枃浠墮兘閬靛驚浜嗗悓鏍風殑瑙勮寖錛屽洜姝ゅ湪鐢-l閫夐」鎸囧畾閾炬帴鐨勫簱鏂囦歡鍚嶆椂鍙浠ョ渷鍘 lib涓変釜瀛楁瘝錛屼篃灝辨槸璇碐CC鍦ㄥ-lfoo榪涜屽勭悊鏃訛紝浼氳嚜鍔ㄥ幓閾炬帴鍚嶄負libfoo.so鐨勬枃浠躲
Linux涓嬬殑搴撴枃浠跺垎涓轟袱澶х被鍒嗗埆鏄鍔ㄦ侀摼鎺ュ簱錛堥氬父浠.so緇撳熬錛夊拰闈欐侀摼 鎺ュ簱錛堥氬父浠.a緇撳熬錛夛紝涓よ呯殑宸鍒浠呭湪紼嬪簭鎵ц屾椂鎵闇鐨勪唬鐮佹槸鍦ㄨ繍琛屾椂鍔ㄦ佸姞杞界殑錛岃繕鏄鍦ㄧ紪璇戞椂闈欐佸姞杞界殑銆傞粯璁ゆ儏鍐典笅錛孏CC鍦ㄩ摼鎺ユ椂浼樺厛浣跨敤鍔ㄦ侀摼 鎺ュ簱錛屽彧鏈夊綋鍔ㄦ侀摼鎺ュ簱涓嶅瓨鍦ㄦ椂鎵嶈冭檻浣跨敤闈欐侀摼鎺ュ簱錛屽傛灉闇瑕佺殑璇濆彲浠ュ湪緙栬瘧鏃跺姞涓-static閫夐」錛屽己鍒朵嬌鐢ㄩ潤鎬侀摼鎺ュ簱銆備緥濡傦紝濡傛灉鍦 /home/xiaowp/lib/鐩褰曚笅鏈夐摼鎺ユ椂鎵闇瑕佺殑搴撴枃浠秎ibfoo.so鍜宭ibfoo.a錛屼負浜嗚 GCC鍦ㄩ摼鎺ユ椂鍙鐢ㄥ埌闈欐侀摼鎺ュ簱錛屽彲浠ヤ嬌鐢ㄤ笅闈㈢殑鍛戒護錛
澶嶅埗浠g爜
浠g爜濡備笅:
# gcc foo.c -L /home/xiaowp/lib -static -lfoo -o foo
❺ linux下編寫c++,include的那些頭文件在什麼地方
C/C++程序在linux下被編譯和連接時,GCC/G++會查找系統默認的include和link的路徑,以及自己在編譯命令中指定的路徑。
1、#include <stdio.h>,直接到系統指定目錄去查找頭文件。
系統默認路徑為:/usr/include,/usr/local/include,/usr/lib/gcc-lib/i386-Linux/2.95.2/include(gcc庫文件的路徑,各個系統不一致)
2、#include "stidio.h",會先到當前目錄查找頭文件,如果沒找到在到系統指定目錄查找。
3、gcc編譯時查找頭文件,按照以下路徑順序查找:
gcc編譯時,可以設置-I選項以指定頭文件的搜索路徑,如果指定多個路徑,則按照順序依次查找。比如,gcc -I /usr/local/include/node a.c
gcc會查找環境變數C_INCLUDE_PATH,CPLUS_INCLUDE_PATH中指定的路徑。
(5)linux編譯頭文件命令擴展閱讀:
應用程序代碼編譯過程:
編譯器根據頭文件提供的庫函數介面形式,來編譯代碼,然後生成目標文件;然後,再使用鏈接器將這個目標文件與系統庫鏈接;最終生成應用程序。代碼包含了自己寫的內容,還有系統提供好的現成的庫函數,整個結合起來才形成一個完整的程序。
庫函數的頭文件,在編譯的時候被使用,而庫函數的代碼段(庫文件),在鏈接的時候被使用。
example:
應用程序代碼在使用一個系統調用的時候,例如printf()函數,需要指定包含的頭文件stdio.h;另外,在鏈接的時候對應的鏈接libc.a(筆者電腦文件所在目錄:/usr/lib/i386-linux-gnu/libc.a)。
總結一下,編寫應用程序,需要使用linux系統提供的庫函數。具體實現起來,需要頭文件和庫文件。頭文件是需要我們編寫應用程序的時候,在源文件開頭添加的;而庫文件則需要配置編譯環境進行指定搜索目錄。