⑴ 乘法怎樣算最簡便
你好,我覺得乘法運算使用乘法的幾個簡便演算法最簡便。主要是:
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
例1 計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2 計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3 計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4 計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5 計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
⑵ 三年級上口算多位數乘法題目
三、兩位數乘法口算
一位數乘法口算就是口訣表,在講清算理的基礎上要求背會。這里重點介紹幾種兩位數乘法的特殊演算法。
1、兩個相同因數積的口演算法;(平方口演算法)
(1)、基本數與差數之和口演算法:
基本數:這個數各位分別平方後,組成一個新的數稱基本數。十位平方為基本數百位以上的數,個位平方為基本數十位和個位數,十位無數用零佔位。
差數:這個數十位和個位的積再乘20稱差數。
基本數 + 差數 = 這兩個相同因數的積。
例1、13×13
基本數:百位:1×1=1
十位:用0佔位
個位:3×3=9
所以基本數就是 109
差數:1×3×20=60
基本數 + 差數 = 109 + 60 = 169
所以13×13=169
例2、67×67
基本數:百位以上數字是 6×6=36
十位和個位數字是7×7=49
所以基本數是 3649
差數:6×7×20=840
基本數+差數=3649+840=4489
所以:67×67 = 4489
(2)三步到位法
思維過程:
第一步:把這個數個位平方。得出的數,個位作為積的個位,十位保留。
第二步:把這個數個位和十位相乘,再乘2,然後加上第一步保留的數,所得的數的個位就是積的十位數,十位保留。
第三步:把這個數十位平方,加上第二步保留的數,就是積的百位、千位數。
例1、24×24
第一步:4×4=16 「1」保留,「6」就是積的個位數。
第二步:4×2×2+1=17 「1」保留,「7」就是積的十位數。
第三步 :2×2+1=5 「 5」就是積的百位數.
所以24×24=576
例二、37×37
第一步:7×7=49 "4"保留,"9",就是積的個位數。
第二步:3×7×2+4=46 "4"保留,"6",就是積的十位數。
第三步 :3×3+4=13 "13"就是積的百位和千位數字。
所以:37×37=1369
(3)、接近50兩個相同因數積的口算
思維方法:比50大的兩個相同數的積等於5乘5加上個位數字,再添上個位數字的平方,(必須占兩位,十位無數用零佔位):比50小的兩個相同數的積,等於5乘5減去個位數字的十補數,再添上個位數字十補數的平方(必須占兩位,十位無數用零佔位)。
例1、53×53
5×5+3=28 再添上3×3=9 (必須兩位09) 等於2809
所以:53×53=2809
例2、58×58
5×5+8=33 再添上8×8=64 等於3364
所以:58×58=3364
例3、47×47
5×5-3(3是7的十補數)=22 再添上3×3=9 (必須兩位09)
等於2209
所以:47×47=2209
(4)、末位是5的兩個相同因數積的口算
思維方法:設這個數的十位數字為K,則這兩個相同因數的積就是:K×(K+1)再添上5×5=25 或者 K×(K+1)×100+25
例 1、 35×35=3×(4+1)×100+25=1225
例2、75×75=7×(7+1)×100+25=5625
兩個相同因數積的口算方法很多,這里就不一一介紹了。我們利用兩個相同因數積的口算方法可以口算好多相近的兩個數的積。舉例如下:
例1、13×14
因為:13×13=169 再加13得182 所以 :13×14=182
或者14×14 因為:14×14=196 再減14 還 得182
例2、35×37
因為:35×35=1225 再加70(2×35)得1295
所以 35×37=1295
2、首尾有規律的數的口算
(1)首同尾合十(首同尾補)
思維方法:首數加「1」乘以首數,右邊添上尾數的積(兩位數),如積是一位數,十位用零佔位。
例:76×74=(7+1)×7×100+6×4=5624
(2)尾同首合十(尾同首補)
思維方法:首數相乘加尾數,右邊添上尾數的平方(兩位數),如積是一位數,十位用零佔位。
例:76×36=(7×3+6)×100+6×6=2736
(3)一同一合十(一個數兩位數字相同,一個數兩位數字互補)
思維方法:兩個數的十位數字相乘,再加上相同數字,右邊添上兩尾數的積。如積是一位數,十位用零佔位。
例:33×64=(3×6+3)×100+3×4=2112
以上三種方法,可以用一個公式計算即:
(頭×頭+同)×100 + 尾×尾
3、利用特殊數字相乘口算
有些數字很特殊,它們的積是有規律的。
(1)7乘3的倍數或3乘7的倍數
先看看下面的幾個式子:
7×3=21 7×6=42 7×9=63
7×12=84 7×15=105 7×18=126......7×27=189
我們觀察這幾個式子被乘數都是7,乘數是3的倍數.是3的幾倍,積的個位就是幾,積的十位或者十位以上的數字始終是個位的2倍.
因此,我們可以說:7乘3的倍數,等於該倍數加該倍數的20倍.
果我們設這個倍數為N,用公式表示:7×3N=N+20N(N>0的正整如數)
例1、7×27=7×3×9=9+20×9=189
例2、7×57=7×3×19=19+20×19=398
這個結論3乘7的倍數也適用.我們用這個結論可以口算3的倍數和7的倍數的兩個數相乘.
例3、14×15=7×2×3×5=7×3×10=10+20×10=210
例4、28×36=7×4×3×12=7×3×48=48+20×48=1008
(2)、17乘3的倍數或3乘17的倍數
17乘3的倍數,等於該倍數加該倍數的50倍.(3乘17的倍數也適用)
如果我們設這個倍數為N,用公式表示:17×3N=N+50N(N>0的正整數)
例1、17×21=17×3×7=7+50×7=357
例2、17×84=17×3×28=28+50×28=1428
例3、34×24=17×2×3×8=17×3×16=16+50×16=816
(3)、17乘13的倍數或13乘17的倍數
17乘13的倍數等於該倍數加該倍數的20倍,再加200倍。
如果我們設這個倍數為N,用公式表示:17×13N=N+20N+200N(N>0的正整數)
例1、17×78=17×13×6=6+20×6+200×6=1326
例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10
=2210
例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12
=2652
(4)43乘7的倍數或7乘43的倍數
43乘7的倍數等於該倍數加該倍數的300倍。
如果我們設這個倍數為N,用公式表示:43×7N=N+300N(N>0的正整數)
例1、43×28=43×7×4=4+300×4=1204
例2、43×84=43×7×12=12+300×12=3612
4、兩個接近100的數相乘的口算
(1)超過100的兩個數相乘
思維方法:先把一個因數加上另一個因數與100的差,然後在所得的結果後面添上兩個因數分別與100之差的積。
例1、103×104=(103+4)×100+3×4=10712
例2、112×107=(112+7)×100+12×7=11984
(2)不足100的兩個數相乘
思維方法:先從一個因數中減去另一個因數與100的差,然後在所得的結果後面添上兩個因數分別與100之差的積。
例1、92×94=(92-6)×100+8×6=8648
或者:92×94=(94-8)×100+8×6=8648
(3)一個超過100,一個不足100的兩個數相乘
思維方法:超過100的數減不足100的差,擴大100倍後,減去兩個因數分別與100之差的積。
例1、104×97=(104-3)×100-4×3=10100-12=10088
口算的技巧太多了。以上僅介紹了部分特殊口算技巧,還有利用運算定律和運算性質可以口算;利用湊整法可以口算等等。要求我們教師要熟記和掌握這些方法,關鍵只有一種:最終近快的准確的口算出結果。
⑶ 67×18 33×18的簡便演算法
乘除混合運算時,乘在前先算乘,除在前先算除,有括弧的先算括弧裡面的。
加法、減法、乘法、除法,統稱為四則運算。
其中,加法和減法叫做第一級運算;乘法和除法叫做第二級運算。
在混合運算中,先算括弧內的數 ,括弧從小到大,如有乘方先算乘方,然後從高級到低級。
請點擊輸入圖片描述
(3)演算法描述題乘算擴展閱讀
1、乘法運算性質
①幾個數的積乘一個數,可以讓積里的任意一個因數乘這個數,再和其他數相乘。例如:(25×3 × 9)×4=25×4×3×9=2700。
②兩個數的差與一個數相乘,可以讓被減數和減數分別與這個數相乘,再把所得的積相減。例如: (137-125)×8=137×8-125×8=96。
2、除法運算性質
①若某數除以(或乘)一個數,又乘(或除以)同一個數,則這個數不變。例如:68÷17×17=68(或68×17÷17=68)。
②一個數除以幾個數的積,可以用這個數依次除以積里的各個因數。例如:320÷(2×5×8)=320÷2÷5÷8=4。
③一個數除以兩個數的商,等於這個數先除以商中的被除數,再乘商中的除數。例如:56÷(8÷4)=56÷8×4=28。
④幾個數的積除以一個數,可以讓積里的任何一個因數除以這個數,再與其他的因數相乘。例如:8×72 X 4÷9=72÷9×8×4=256。
⑤幾個數的和除以一個數,可以先讓各個加數分別除以這個數,然後再把各個商相加。例如:(24+32+16)÷4=24÷4+32÷4+16÷4=18。
⑥兩個數的差除以一個數,可以從被減數除以這個數所得的商里,減去減數除