㈠ 數學建模演算法有哪些
1. 蒙特卡羅演算法。 該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬來檢驗自己模型的正確性,幾乎是比賽時必用的方法。
2. 數據擬合、參數估計、插值等數據處理演算法。 比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用MATLAB 作為工具。
3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類演算法。 建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo 軟體求解。
4. 圖論演算法。 這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備。
5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法。 這些演算法是演算法設計中比較常用的方法,競賽中很多場合會用到。
6. 最優化理論的三大非經典演算法:模擬退火演算法、神經網路演算法、遺傳演算法。 這些問題是用來解決一些較困難的最優化問題的,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用。
7. 網格演算法和窮舉法。 兩者都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具。
8. 一些連續數據離散化方法。 很多問題都是實際來的,數據可以是連續的,而計算機只能處理離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的。
9. 數值分析演算法。 如果在比賽中採用高級語言進行編程的話,那些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用。
10. 圖象處理演算法。 賽題中有一類問題與圖形有關,即使問題與圖形無關,論文中也會需要圖片來說明問題,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用MATLAB 進行處理。
以下將結合歷年的競賽題,對這十類演算法進行詳細地說明。
以下將結合歷年的競賽題,對這十類演算法進行詳細地說明。
2 十類演算法的詳細說明
2.1 蒙特卡羅演算法
大多數建模賽題中都離不開計算機模擬,隨機性模擬是非常常見的演算法之一。
舉個例子就是97 年的A 題,每個零件都有自己的標定值,也都有自己的容差等級,而求解最優的組合方案將要面對著的是一個極其復雜的公式和108 種容差選取方案,根本不可能去求解析解,那如何去找到最優的方案呢?隨機性模擬搜索最優方案就是其中的一種方法,在每個零件可行的區間中按照正態分布隨機的選取一個標定值和選取一個容差值作為一種方案,然後通過蒙特卡羅演算法模擬出大量的方案,從中選取一個最佳的。另一個例子就是去年的彩票第二問,要求設計一種更好的方案,首先方案的優劣取決於很多復雜的因素,同樣不可能刻畫出一個模型進行求解,只能靠隨機模擬模擬。
2.2 數據擬合、參數估計、插值等演算法
數據擬合在很多賽題中有應用,與圖形處理有關的問題很多與擬合有關系,一個例子就是98 年美國賽A 題,生物組織切片的三維插值處理,94 年A 題逢山開路,山體海拔高度的插值計算,還有吵的沸沸揚揚可能會考的「非典」問題也要用到數據擬合演算法,觀察數據的走向進行處理。此類問題在MATLAB中有很多現成的函數可以調用,熟悉MATLAB,這些方法都能游刃有餘的用好。
2.3 規劃類問題演算法
競賽中很多問題都和數學規劃有關,可以說不少的模型都可以歸結為一組不等式作為約束條件、幾個函數表達式作為目標函數的問題,遇到這類問題,求解就是關鍵了,比如98年B 題,用很多不等式完全可以把問題刻畫清楚,因此列舉出規劃後用Lindo、Lingo 等軟體來進行解決比較方便,所以還需要熟悉這兩個軟體。
2.4 圖論問題
98 年B 題、00 年B 題、95 年鎖具裝箱等問題體現了圖論問題的重要性,這類問題演算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等問題。每一個演算法都應該實現一遍,否則到比賽時再寫就晚了。
2.5 計算機演算法設計中的問題
計算機演算法設計包括很多內容:動態規劃、回溯搜索、分治演算法、分支定界。比如92 年B 題用分枝定界法,97 年B 題是典型的動態規劃問題,此外98 年B 題體現了分治演算法。這方面問題和ACM 程序設計競賽中的問題類似,推薦看一下《計算機演算法設計與分析》(電子工業出版社)等與計算機演算法有關的書。
2.6 最優化理論的三大非經典演算法
這十幾年來最優化理論有了飛速發展,模擬退火法、神經網路、遺傳演算法這三類演算法發展很快。近幾年的賽題越來越復雜,很多問題沒有什麼很好的模型可以借鑒,於是這三類演算法很多時候可以派上用場,比如:97 年A 題的模擬退火演算法,00 年B 題的神經網路分類演算法,象01 年B 題這種難題也可以使用神經網路,還有美國競賽89 年A 題也和BP 演算法有關系,當時是86 年剛提出BP 演算法,89 年就考了,說明賽題可能是當今前沿科技的抽象體現。03 年B 題伽馬刀問題也是目前研究的課題,目前演算法最佳的是遺傳演算法。
2.7 網格演算法和窮舉演算法
網格演算法和窮舉法一樣,只是網格法是連續問題的窮舉。比如要求在N 個變數情況下的最優化問題,那麼對這些變數可取的空間進行采點,比如在[a; b] 區間內取M +1 個點,就是a; a+(b-a)/M; a+2 (b-a)/M; …… ; b 那麼這樣循環就需要進行(M + 1)N 次運算,所以計算量很大。比如97 年A 題、99 年B 題都可以用網格法搜索,這種方法最好在運算速度較快
的計算機中進行,還有要用高級語言來做,最好不要用MATLAB 做網格,否則會算很久的。窮舉法大家都熟悉,就不說了。
2.8 一些連續數據離散化的方法
大部分物理問題的編程解決,都和這種方法有一定的聯系。物理問題是反映我們生活在一個連續的世界中,計算機只能處理離散的量,所以需要對連續量進行離散處理。這種方法應用很廣,而且和上面的很多演算法有關。事實上,網格演算法、蒙特卡羅演算法、模擬退火都用了這個思想。
2.9 數值分析演算法
這類演算法是針對高級語言而專門設的,如果你用的是MATLAB、Mathematica,大可不必准備,因為象數值分析中有很多函數一般的數學軟體是具備的。
2.10 圖象處理演算法
01 年A 題中需要你會讀BMP 圖象、美國賽98 年A 題需要你知道三維插值計算,03 年B 題要求更高,不但需要編程計算還要進行處理,而數模論文中也有很多圖片需要展示,因此圖象處理就是關鍵。做好這類問題,重要的是把MATLAB 學好,特別是圖象處理的部分。
㈡ 哈希演算法與MD5、SHA
哈希演算法(Hash Algorithm)又稱散列演算法、散列函數、哈希函數,是一種從任何一種數據中創建小的數字「指紋」的方法。哈希演算法將數據重新打亂混合,重新創建一個哈希值。
哈希演算法通常有以下幾個特點:
哈希演算法主要用來保障數據真實性(即完整性),即發信人將原始消息和哈希值一起發送,收信人通過相同的哈希函數來校驗原始數據是否真實。
註:
哈希演算法主要有MD4、MD5、SHA。
沖突避免:
宇宙中原子數大約在10的60次方到80次方之間,所以2的256次方有足夠的空間容納所有的可能,演算法好的情況下沖突碰撞的概率很低。
MD5
1、數據填充
對消息進行數據填充,使消息的長度對512取模得448,設消息長度為X,即滿足X mod 512=448。根據此公式得出需要填充的數據長度。
填充方法:在消息後面進行填充,填充第一位為1,其餘為0。
2、添加消息長度
在第一步結果之後再填充上原消息的長度,可用來進行的存儲長度為64位。如果消息長度大於264,則只使用其低64位的值,即(消息長度 對 264取模)。
在此步驟進行完畢後,最終消息長度就是512的整數倍。
3、數據處理
准備需要用到的數據:
4個常數: A = 0x67452301, B = 0x0EFCDAB89, C = 0x98BADCFE, D = 0x10325476; 4個函數:F(X,Y,Z)=(X & Y) | ((~X) & Z); G(X,Y,Z)=(X & Z) | (Y & (~Z)); H(X,Y,Z)=X ^ Y ^ Z; I(X,Y,Z)=Y ^ (X | (~Z)); 把消息分以512位為一分組進行處理,每一個分組進行4輪變換,以上面所說4個常數為起始變數進行計算,重新輸出4個變數,以這4個變數再進行下一分組的運算,如果已經是最後一個分組,則這4個變數為最後的結果,即MD5值。
代碼實現: MD5演算法C代碼實現
SHA-1
2017年2月23日,CWI Amsterdam與Google宣布了一個成功的SHA-1碰撞攻擊[12][13],發布了兩份內容不同但SHA-1散列值相同的PDF文件作為概念證明。
SHA1的分組過程
對於任意長度的明文,SHA1的明文分組過程與MD5相類似,首先需要對明文添加位數,使明文總長度為448(mod512)位。在明文後添加位的方法是第一個添加位是l,其餘都是0。然後將真正明文的長度(沒有添加位以前的明文長度)以64位表示,附加於前面已添加過位的明文後,此時的明文長度正好是512位的倍數。與MD5不同的是SHA1的原始報文長度不能超過2的64次方,另外SHA1的明文長度從低位開始填充。
經過添加位數處理的明文,其長度正好為512位的整數倍,然後按512位的長度進行分組(block),可以劃分成L份明文分組,我們用Y0,Y1,……YL-1表示這些明文分組。對於每一個明文分組,都要重復反復的處理,這些與MD5是相同的。
對於512位的明文分組,SHA1將其再分成16份子明文分組(sub-block),每份子明文分組為32位,我們使用M[k](k= 0, 1,……15)來表示這16份子明文分組。之後還要將這16份子明文分組擴充到80份子明文分組,我們記為W[k](k= 0, 1,……79),擴充的方法如下。
W t = M t , 當0≤t≤15
W t = ( W t-3 ⊕ W t-8⊕ W t-14⊕ W t-16 ) «< 1, 當16≤t≤79
SHA1有4輪運算,每一輪包括20個步驟(一共80步),最後產生160位摘要,這160位摘要存放在5個32位的鏈接變數中,分別標記為A、B、C、D、E。這5個鏈接變數的初始值以16進制位表示如下。
A=0x67452301
B=0xEFCDAB89
C=0x98BADCFE
D=0x10325476
E=0xC3D2E1F0
SHA1的4輪運算
SHA1有4輪運算,每一輪包括20個步驟,一共80步,當第1輪運算中的第1步驟開始處理時,A、B、C、D、E五個鏈接變數中的值先賦值到另外5個記錄單元A′,B′,C′,D′,E′中。這5個值將保留,用於在第4輪的最後一個步驟完成之後與鏈接變數A,B,C,D,E進行求和操作。
SHA1的4輪運算,共80個步驟使用同一個操作程序,如下:
A,B,C,D,E←[(A«<5)+ ft(B,C,D)+E+Wt+Kt],A,(B«<30),C,D
其中 ft(B,C,D)為邏輯函數,Wt為子明文分組W[t],Kt為固定常數。這個操作程序的意義為:
● 將[(A«<5)+ ft(B,C,D)+E+Wt+Kt]的結果賦值給鏈接變數A;
● 將鏈接變數A初始值賦值給鏈接變數B;
● 將鏈接變數B初始值循環左移30位賦值給鏈接變數C;
● 將鏈接變數C初始值賦值給鏈接變數D;
● 將鏈接變數D初始值賦值給鏈接變數E。
代碼實現: SHA-1演算法C代碼實現
SHA-256
SHA-256 演算法輸入報文的最大長度不超過2^64 bit,輸入按512-bit 分組進行處理,產生的輸出是一個256-bit 的報文摘要。
代碼實現: SHA-256演算法C代碼實現
參考
簡書: Hash演算法總結
維基網路: 哈希函數散列函數
維基網路: MD5演算法
網路: MD5
CNBlogs: SHA1演算法原理
CSDN: SHA-256演算法實現