導航:首頁 > 源碼編譯 > 多目標優化免疫演算法

多目標優化免疫演算法

發布時間:2025-01-14 12:17:25

❶ 多目標智能優化演算法及其應用的序言

大多數工程和科學問題都是多目標優化問題,存在多個彼此沖突的目標,如何獲取這些問題的最優解,一直都是學術界和工程界關注的焦點問題.與單目標優化問題不同,多目標優化的本質在於,大多數情況下,某目標的改善可能引起其他目標性能的降低,同時使多個目標均達到最優是不可能的,只能在各目標之間進行協調權衡和折中處理,使所有目標函數盡可能達到最優,而且問題的最優解由數量眾多,甚至無窮大的Pareto最優解組成。
智能優化演算法是一類通過模擬某一自然現象或過程而建立起來的優化方法』這類演算法包括進化演算法、粒子群演算法、禁忌搜索、分散搜索、模擬退火、人工免疫系統和蟻群演算法等。和傳統的數學規劃法相比,智能優化演算法更適合求解多目標優化問題。首先,大多數智能優化演算法能同時處理一組解,演算法每運行一次,能獲得多個有效解。其次,智能優化演算法對Pareto最優前端的形狀和連續性不敏感,能很好地逼近非凸或不連續的最優前端。目前,智能優化演算法作為一類啟發式搜索演算法,已被成功應用於多目標優化領域,出現了一些熱門的研究方向,如進化多目標優化,同時,多目標智能優化演算法在電力系統、製造系統和控制系統等方面的應用研究也取得了很大的進展。
本書力圖全面總結作者和國內外同行在多目標智能優化演算法的理論與應用方面所取得的一系列研究成果。全書包括兩部分,共8章。第一部分為第1-4主要介紹了各種多目標智能優化演算法的理論。其中第1章為緒論,介紹各種智能優化演算法的基本思想和原理。第2章介紹多目標進化演算法,主要描述多目標進化演算法的基本原理、典型演算法和各種進化機制與策略,如混合策略、協同進化和動態進化策略等。第3章介紹多目標粒子群演算法,包括基本原理、典型演算法、混合演算法和交互粒子群演算法等。第4章描述除粒子群演算法和進化演算法之外的其他多目標智能優化演算法,主要介紹多目標模擬退火演算法、多目標蟻群演算法、多目標免疫演算法、多目標差分進化演算法和多目標分散搜索等。
第二部分為第5-8章,主要介紹了多目標智能優化演算法的應用』包括神經網路優化、生產調度、交通與物流系統優化、電力系統優化及其他。第5章描述人工神經網路的多目標優化,主要包括Pareto進化神經網路、徑向基神經網路、遞歸神經網路和模糊神經網路。第6章介紹交通與物流系統優化,主要描述了智能優化演算法在物流配送、城市公交路線網路和公共交通調度等方面的應用。

❷ 多目標智能優化演算法及其應用的目錄

《智能科學技術著作叢書》序
前言
第1章 緒論
1.1 進化演算法
1.1.1 進化演算法的基本框架
1.1.2 遺傳演算法
1.1.3 進化策略
1.1.4 進化規劃
1.2 粒子群演算法
1.2.1 標准粒子群演算法
1.2.2 演算法解析
1.3 蟻群演算法
1.3.1 蟻群演算法的基本思想
1.3.2 蟻群演算法的實現過程
1.3.3 蟻群演算法描述
1.3.4 蟻群優化的特點
1.4 模擬退火演算法122
1.4.1 模擬退火演算法的基本原理
1.4.2 模擬退火演算法描述
1.5 人工免疫系統
1.5.1 生物免疫系統
1.5.2 人工免疫系統
1.6 禁忌搜索
1.7 分散搜索
1.8 多目標優化基本概念
參考文獻
第2章 多目標進化演算法
2.1 基本原理
2.1.1 MOEA模型
2.1.2 性能指標與測試函數
2.2 典型多目標進化演算法
2.2.1 VEGA、MOGA、NPGA和NSGA
2.2.2 SPEA和SPEA2
2.2.3 NSGA2
2.2.4 PAES
2.2.5 其他典型MOEA
2.3 多目標混合進化演算法
2.3.1 多目標遺傳局部搜索
2.3.2 J—MOGLS
2.3.3 M PAES
2.3.4 多目標混沌進化演算法
2.4 協同多目標進化演算法
2.5 動態多目標進化演算法
2.5.1 IMOEA
2.5.2 動態MOEA(DMOEA)
2.6 並行多目標進化演算法
2.6.1 並行多目標進化演算法的基本原理
2.6.2 多解析度多目標遺傳演算法
2.6.3 並行單前端遺傳演算法
2.7 其他多目標進化演算法
2.7.1 高維多目標優化的NSGA2改進演算法
2.7.2 動態多目標優化的進化演算法
2.8 結論與展望
參考文獻
第3章 多目標粒子群演算法
3.1 基本原理
3.2 典型多目標粒子群演算法
3.2.1 CMOPSO
3.2.2 多目標全面學習粒子群演算法
3.2.3 Pareto檔案多目標粒子群優化
3.3 多目標混合粒子群演算法
3.3.1 模糊多目標粒子群演算法
3.3.2 基於分散搜索的多目標混合粒子群演算法
3.4 交互粒子群演算法
3.5 結論
參考文獻
第4章 其他多目標智能優化演算法
4.1 多目標模擬退火演算法
4.2 多目標蟻群演算法
4.2.1 連續優化問題的多目標蟻群演算法
4.2.2 組合優化問題的多目標蟻群演算法
4.3 多目標免疫演算法
4.4 多目標差分進化演算法
4.5 多目標分散搜索
4.6 結論
參考文獻
第5章 人工神經網路優化
5.1 Pareto進化神經網路
5.2 徑向基神經網路優化與設計
5.3 遞歸神經網路優化與設計
5.4 模糊神經網路多目標優化
5.5 結論
參考文獻
第6章 交通與物流系統優化
6.1 物流配送路徑優化
6.1.1 多目標車輛路徑優化
6.1.2 多目標隨機車輛路徑優化
6.2 城市公交路線網路優化
6.3 公共交通調度
6.3.1 概述
6.3.2 多目標駕駛員調度
6.4 結論
參考文獻
第7章 多目標生產調度
7.1 生產調度描述_
7.1.1 車間調度問題
7.1.2 間隙生產調度
7.1.3 動態生產調度
7.1.4 批處理機調度和E/T調度
7.2 生產調度的表示方法
7.3 基於進化演算法的多目標車間調度
7.3.1 多目標流水車間調度
7.3.2 多目標作業車間調度
7.4 基於進化演算法的多目標模糊調度
7.4.1 模糊調度:Sakawa方法
7.4.2 模糊作業車間調度:cMEA方法
7.5 基於進化演算法的多目標柔性調度
7.5.1 混合遺傳調度方法
7.5.2 混合遺傳演算法
7.6 基於粒子群優化的多目標調度
7.6.1 基於粒子群優化的多目標作業車間調度
7.6.2 多目標柔性調度的混合粒子群方法
7.7 多目標隨機調度
7.8 結論與展望
參考文獻
第8章 電力系統優化及其他
8.1 電力系統優化
8.1.1 基於免疫演算法的多目標無功優化
8.1.2 基於分層優化的多目標電網規劃
8.1.3 基於NSGA2及協同進化的多目標電網規劃
8.2 多播Qos路由優化
8.3 單元製造系統設計
8.3.1 概述
8.3.2 基於禁忌搜索的多目標單元構造
8.3.3 基於並行禁忌搜索的多目標單元構造
8.4 自動控制系統設計
8.4.1 概述
8.4.2 混合動力學系統控制
8.4.3 魯棒PID控制器設計
8.5 結論
參考文獻
附錄 部分測試函數
……

❸ 請大家介紹一下遺傳演算法的書籍

王小平的《遺傳演算法——理論、應用與軟體實現》屬於較為經典的書,很多人都是看這本書入門的

焦李成等主編的《協同進化計算與多智能體系統》是一本非常好的書,內容不但新穎實用,後面的參考資料也非常豐富,而且大都是這方面的研究前沿和研究熱點。這本書還是國家863和973計劃資助的,很值得學習。

論文方面國內的你可以搜一下鍾偉才的論文,他應該是焦的學生(我猜的),他們都是西安電子科技大學雷達信號處理國家重點實驗室的專家。

多智能體系統,免疫進化計算,協同進化,粒子群遺傳演算法應該是這幾年比較熱的題目

如果你是做數值優化或者是多目標計算,你重點要弄清實數編碼的遺傳演算法,如果是TSP或者是背包問題,則要深入了解二進制編碼的遺傳演算法。

向你推薦兩篇文章:
《An Orthogonal Genetic Algorithm with Quantization for Global Numerical optimition》
《A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II》

第一篇主要解決超高維(幾百甚至上千維,不過我給你推薦的第二本書已經將這個紀錄推到了上萬維)問題。
第二篇主要講了一下利用協同進化的方法,求解多目標優化的問題,在實際應用價值很大。

我的郵箱[email protected]

閱讀全文

與多目標優化免疫演算法相關的資料

熱點內容
javaexcel讀取數字 瀏覽:805
php購物車用session 瀏覽:624
安卓是靠什麼賺錢的 瀏覽:817
程序員怎麼嫁對象 瀏覽:818
android線程對象 瀏覽:689
命令形撒嬌 瀏覽:628
伺服器1433埠是什麼 瀏覽:106
如何建立sql伺服器連接 瀏覽:750
華為全加密卡破解 瀏覽:774
微軟程序員證 瀏覽:883
程序員小分享 瀏覽:206
微信加密內容發給對方 瀏覽:327
程序員新手怎麼選 瀏覽:629
伺服器ip地址變後連不上 瀏覽:644
整個文件夾比對軟體 瀏覽:870
列舉單片機的五大優點 瀏覽:459
為什麼安卓游戲不能互換 瀏覽:850
androidwebview淘寶 瀏覽:468
重連伺服器獲取數據什麼意思 瀏覽:298
小貝伢用什麼app 瀏覽:106