導航:首頁 > 源碼編譯 > 卡爾曼演算法流程圖

卡爾曼演算法流程圖

發布時間:2022-04-15 13:36:43

Ⅰ 卡爾曼濾波的通俗解釋

簡單來說,卡爾曼濾波器是一個「optimal recursive data processing algorithm(最優化自回歸數據處理演算法)」。對於解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器人導航,控制,感測器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近來更被應用於計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。
卡爾曼濾波器的介紹 :
為了可以更加容易的理解卡爾曼濾波器,這里會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程序相當的簡單,只要你理解了他的那5條公式。
在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。
假設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恆定的,也就是下一分鍾的溫度等於現在這一分鍾的溫度(假設我們用一分鍾來做時間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白雜訊(White Gaussian Noise),也就是這些偏差跟前後時間是沒有關系的而且符合高斯分布(Gaussian Distribution)。另外,我們在房間里放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白雜訊。
好了,現在對於某一分鍾我們有兩個有關於該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的雜訊來估算出房間的實際溫度值。
假如我們要估算k時刻的實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恆定的,所以你會得到k時刻的溫度預測值是跟k-1時刻一樣的,假設是23度,同時該值的高斯雜訊的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開方,就是5)。然後,你從溫度計那裡得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。
由於我們用於估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的協方差(covariance)來判斷。因為Kg=5^2/(5^2+4^2),所以Kg=0.61,我們可以估算出k時刻的實際溫度值是:23+0.61*(25-23)=24.22度。可以看出,因為溫度計的協方差(covariance)比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。
現在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什麼自回歸的東西出現。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優值(24.22度)的偏差。演算法如下:((1-Kg)*5^2)^0.5=3.12。這里的5就是上面的k時刻你預測的那個23度溫度值的偏差,得出的3.12就是進入k+1時刻以後k時刻估算出的最優溫度值的偏差(對應於上面的3)。
就是這樣,卡爾曼濾波器就不斷的把(協方差(covariance)遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的協方差(covariance)。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!
下面就要言歸正傳,討論真正工程系統上的卡爾曼。
卡爾曼濾波器演算法 :
在這一部分,我們就來描述源於Dr Kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(Probability),隨機變數(Random Variable),高斯或正態分配(Gaussian Distribution)還有State-space Model等等。但對於卡爾曼濾波器的詳細證明,這里不能一一描述。
首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(Linear Stochastic Difference equation)來描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系統的測量值:
Z(k)=H X(k)+V(k)
上兩式子中,X(k)是k時刻的系統狀態,U(k)是k時刻對系統的控制量。A和B是系統參數,對於多模型系統,他們為矩陣。Z(k)是k時刻的測量值,H是測量系統的參數,對於多測量系統,H為矩陣。W(k)和V(k)分別表示過程和測量的雜訊。他們被假設成高斯白雜訊(White Gaussian Noise),他們的協方差(covariance)分別是Q,R(這里我們假設他們不隨系統狀態變化而變化)。
對於滿足上面的條件(線性隨機微分系統,過程和測量都是高斯白雜訊),卡爾曼濾波器是最優的信息處理器。下面我們結合他們的協方差來估算系統的最優化輸出(類似上一節那個溫度的例子)。
首先我們要利用系統的過程模型,來預測下一狀態的系統。假設現在的系統狀態是k,根據系統的模型,可以基於系統的上一狀態而預測出現在狀態:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一狀態預測的結果,X(k-1|k-1)是上一狀態最優的結果,U(k)為現在狀態的控制量,如果沒有控制量,它可以為0。
到現在為止,我們的系統結果已經更新了,可是,對應於X(k|k-1)的協方差還沒更新。我們用P表示協方差(covariance):
P(k|k-1)=A P(k-1|k-1) A』+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)對應的協方差,P(k-1|k-1)是X(k-1|k-1)對應的協方差,A』表示A的轉置矩陣,Q是系統過程的協方差。式子1,2就是卡爾曼濾波器5個公式當中的前兩個,也就是對系統的預測。
現在我們有了現在狀態的預測結果,然後我們再收集現在狀態的測量值。結合預測值和測量值,我們可以得到現在狀態(k)的最優化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg為卡爾曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H』 / (H P(k|k-1) H』 + R) ……… (4)
到現在為止,我們已經得到了k狀態下最優的估算值X(k|k)。但是為了要令卡爾曼濾波器不斷的運行下去直到系統過程結束,我們還要更新k狀態下X(k|k)的協方差:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 為1的矩陣,對於單模型單測量,I=1。當系統進入k+1狀態時,P(k|k)就是式子(2)的P(k-1|k-1)。這樣,演算法就可以自回歸的運算下去。
卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個基本公式。根據這5個公式,可以很容易用計算機編程實現。
在上面的例子中,過程誤差和測量誤差設定為4是為了討論的方便。實際中,溫度的變化速度以及溫度計的測量誤差都沒有這么大。
假設如下一個系統: 房間內連續兩個時刻溫度差值的標准差為0.02度 溫度計的測量值誤差的標准差為0.5度 房間溫度的真實值為24度 對溫度的初始估計值為23.5度,誤差的方差為1 MatLab模擬的代碼如下:
% Kalman filter example of temperature measurement in Matlab
% This M code is modified from Xuchen Yao's matlab on 2013/4/18
%房間當前溫度真實值為24度,認為下一時刻與當前時刻溫度相同,誤差為0.02度(即認為連續的兩個時刻最多變化0.02度)。
%溫度計的測量誤差為0.5度。
%開始時,房間溫度的估計為23.5度,誤差為1度。
% Kalman filter example demo in Matlab
% This M code is modified from Andrew D. Straw's Python
% implementation of Kalman filter algorithm.
% The original code is from the link in references
% Below is the Python version's comments:
% Kalman filter example demo in Python
% A Python implementation of the example given in pages 11-15 of An
% Introction to the Kalman Filter by Greg Welch and Gary Bishop,
% University of North Carolina at Chapel Hill, Department of Computer
% Science, TR 95-041,
% by Andrew D. Straw
% by Xuchen Yao
% by Lin Wu
clear all;
close all;
% intial parameters
n_iter = 100; %計算連續n_iter個時刻
sz = [n_iter, 1]; % size of array. n_iter行,1列
x = 24; % 溫度的真實值
Q = 4e-4; % 過程方差, 反應連續兩個時刻溫度方差。更改查看效果
R = 0.25; % 測量方差,反應溫度計的測量精度。更改查看效果
z = x + sqrt(R)*randn(sz); % z是溫度計的測量結果,在真實值的基礎上加上了方差為0.25的高斯雜訊。
% 對數組進行初始化
xhat=zeros(sz); % 對溫度的後驗估計。即在k時刻,結合溫度計當前測量值與k-1時刻先驗估計,得到的最終估計值
P=zeros(sz); % 後驗估計的方差
xhatminus=zeros(sz); % 溫度的先驗估計。即在k-1時刻,對k時刻溫度做出的估計
Pminus=zeros(sz); % 先驗估計的方差
K=zeros(sz); % 卡爾曼增益,反應了溫度計測量結果與過程模型(即當前時刻與下一時刻溫度相同這一模型)的可信程度
% intial guesses
xhat(1) = 23.5; %溫度初始估計值為23.5度
P(1) =1; %誤差方差為1
for k = 2:n_iter
% 時間更新(預測)
xhatminus(k) = xhat(k-1); %用上一時刻的最優估計值來作為對當前時刻的溫度的預測
Pminus(k) = P(k-1)+Q; %預測的方差為上一時刻溫度最優估計值的方差與過程方差之和
% 測量更新(校正)
K(k) = Pminus(k)/( Pminus(k)+R ); %計算卡爾曼增益
xhat(k) = xhatminus(k)+K(k)*(z(k)-xhatminus(k)); %結合當前時刻溫度計的測量值,對上一時刻的預測進行校正,得到校正後的最優估計。該估計具有最小均方差
P(k) = (1-K(k))*Pminus(k); %計算最終估計值的方差
end
FontSize=14;
LineWidth=3;
figure();
plot(z,'k+'); %畫出溫度計的測量值 hold on;
plot(xhat,'b-','LineWidth',LineWidth) %畫出最優估計值
hold on;
plot(x*ones(sz),'g-','LineWidth',LineWidth); %畫出真實值
legend('溫度計的測量結果', '後驗估計', '真實值');
xl=xlabel('時間(分鍾)');
yl=ylabel('溫度');
set(xl,'fontsize',FontSize);
set(yl,'fontsize',FontSize);
hold off;
set(gca,'FontSize',FontSize);
figure();
valid_iter = [2:n_iter]; % Pminus not valid at step 1
plot(valid_iter,P([valid_iter]),'LineWidth',LineWidth); %畫出最優估計值的方差
legend('後驗估計的誤差估計');
xl=xlabel('時間(分鍾)');
yl=ylabel('℃^2');
set(xl,'fontsize',FontSize);
set(yl,'fontsize',FontSize);
set(gca,'FontSize',FontSize);

Ⅱ 卡爾曼濾波,求大神用點通俗易懂的方式解釋一下,越詳細越好!

卡爾曼濾波(Kalman filtering)一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的演算法。由於觀測數據中包括系統中的雜訊和干擾的影響,所以最優估計也可看作是濾波過程。

斯坦利·施密特(Stanley Schmidt)首次實現了卡爾曼濾波器。卡爾曼在NASA埃姆斯研究中心訪問時,發現他的方法對於解決阿波羅計劃的軌道預測很有用,後來阿波羅飛船的導航電腦使用了這種濾波器。 關於這種濾波器的論文由Swerling (1958), Kalman (1960)與 Kalman and Bucy (1961)發表。

數據濾波是去除雜訊還原真實數據的一種數據處理技術, Kalman濾波在測量方差已知的情況下能夠從一系列存在測量雜訊的數據中,估計動態系統的狀態. 由於, 它便於計算機編程實現, 並能夠對現場採集的數據進行實時的更新和處理, Kalman濾波是目前應用最為廣泛的濾波方法, 在通信, 導航, 制導與控制等多領域得到了較好的應用.

Ⅲ 什麼叫卡爾曼濾波演算法其序貫演算法

卡爾曼濾波演算法(Kalman filtering)一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的演算法。由於觀測數據中包括系統中的雜訊和干擾的影響,所以最優估計也可看作是濾波過程。
序貫演算法又叫序貫相似性檢測演算法,是指圖像匹配技術是根據已知的圖像模塊(模板圖)在另一幅圖像(搜索圖)中尋找相應或相近模塊的過程,它是計算機視覺和模式識別中的基本手段。已在衛星遙感、空間飛行器的自動導航、機器人視覺、氣象雲圖分析及醫學x射線圖片處理等許多領域中得到了廣泛的應用。研究表明,圖像匹配的速度主要取決於匹配演算法的搜索策略。
數據濾波是去除雜訊還原真實數據的一種數據處理技術, Kalman濾波在測量方差已知的情況下能夠從一系列存在測量雜訊的數據中,估計動態系統的狀態. 由於, 它便於計算機編程實現, 並能夠對現場採集的數據進行實時的更新和處理, Kalman濾波是目前應用最為廣泛的濾波方法, 在通信, 導航, 制導與控制等多領域得到了較好的應用。

Ⅳ 卡爾曼濾波演算法是什麼

卡爾曼濾波是一個濾波演算法,應用非常廣泛,它是一種結合先驗經驗、測量更新的狀態估計演算法,卡爾曼濾波器是在估計線性系統狀態的過程中,以最小均方誤差為目的而推導出的幾個遞推數學等式。

卡爾曼過程中要用到的概念。即什麼是協方差,它有什麼含義,以及什麼叫最小均方誤差估計,什麼是多元高斯分布。如果對這些有了了解,可以跳過,直接到下面的分割線。

均方誤差:

它是"誤差"的平方的期望值(誤差就是每個估計值與真實值的差),也就是多個樣本的時候,均方誤差等於每個樣本的誤差平方再乘以該樣本出現的概率的和。

方差:

方差是描述隨機變數的離散程度,是變數離期望值的距離。

注意:

兩者概念上稍有差別,當你的樣本期望值就是真實值時,兩者又完全相同。最小均方誤差估計就是指估計參數時要使得估計出來的模型和真實值之間的誤差平方期望值最小。

Ⅳ 卡爾曼濾波的基本原理和演算法

卡爾曼濾波的原理用幾何方法來解釋。這時,~X和~Z矩陣中的每個元素應看做向量空間中的一個向量而不再是一個單純的數。這個向量空間(統計測試空間)可以看成無窮多維的,每一個維對應一個可能的狀態。~X和~Z矩陣中的每個元素向量都是由所有可能的狀態按照各自出現的概率組合而成(在測量之前,~X和~Z 的實際值都是不可知的)。~X和~Z中的每個元素向量都應是0均值的,與自己的內積就是他們的協方差矩陣。無法給出~X和~Z中每個元素向量的具體表達,但通過協方差矩陣就可以知道所有元素向量的模長,以及相互之間的夾角(從內積計算)。
為了方便用幾何方法解釋,假設狀態變數X是一個1行1列的矩陣(即只有一個待測狀態量),而量測變數Z是一個2行1列的矩陣(即有兩個測量儀器,共同測量同一個狀態量X),也就是說,m=1,n=2。矩陣X中只有X[1]一項,矩陣Z中有Z[1]和Z[2]兩項。Kg此時應是一個1行2列的矩陣,兩個元素分別記作Kg1 和 Kg2 。H和V此時應是一個2行1列的矩陣。

參考資料:
http://blog.csdn.net/newthinker_wei/article/details/11768443

Ⅵ 卡爾曼濾波器的演算法

在這一部分,我們就來描述源於Dr Kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(Probability),隨機變數(Random Variable),高斯或正態分配(Gaussian Distribution)還有State-space Model等等。但對於卡爾曼濾波器的詳細證明,這里不能一一描述。首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(Linear Stochastic Difference equation)來描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系統的測量值:Z(k)=H X(k)+V(k)上兩式子中,X(k)是k時刻的系統狀態,U(k)是k時刻對系統的控制量。A和B是系統參數,對於多模型系統,他們為矩陣。Z(k)是k時刻的測量值,H是測量系統的參數,對於多測量系統,H為矩陣。W(k)和V(k)分別表示過程和測量的雜訊。他們被假設成高斯白雜訊(White Gaussian Noise),他們的covariance 分別是Q,R(這里我們假設他們不隨系統狀態變化而變化)。對於滿足上面的條件(線性隨機微分系統,過程和測量都是高斯白雜訊),卡爾曼濾波器是最優的信息處理器。下面我們來用他們結合他們的covariances 來估算系統的最優化輸出(類似上一節那個溫度的例子)。首先我們要利用系統的過程模型,來預測下一狀態的系統。假設現在的系統狀態是k,根據系統的模型,可以基於系統的上一狀態而預測出現在狀態:X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)式(1)中,X(k|k-1)是利用上一狀態預測的結果,X(k-1|k-1)是上一狀態最優的結果,U(k)為現在狀態的控制量,如果沒有控制量,它可以為0。到現在為止,我們的系統結果已經更新了,可是,對應於X(k|k-1)的covariance還沒更新。我們用P表示covariance:P(k|k-1)=A P(k-1|k-1) A』+Q ……… (2)式(2)中,P(k|k-1)是X(k|k-1)對應的covariance,P(k-1|k-1)是X(k-1|k-1)對應的covariance,A』表示A的轉置矩陣,Q是系統過程的covariance。式子1,2就是卡爾曼濾波器5個公式當中的前兩個,也就是對系統的預測。現在我們有了現在狀態的預測結果,然後我們再收集現在狀態的測量值。結合預測值和測量值,我們可以得到現在狀態(k)的最優化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)其中Kg為卡爾曼增益(Kalman Gain):Kg(k)= P(k|k-1) H』 / (H P(k|k-1) H』 + R) ……… (4)到現在為止,我們已經得到了k狀態下最優的估算值X(k|k)。但是為了要令卡爾曼濾波器不斷的運行下去直到系統過程結束,我們還要更新k狀態下X(k|k)的covariance:P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)其中I 為1的矩陣,對於單模型單測量,I=1。當系統進入k+1狀態時,P(k|k)就是式子(2)的P(k-1|k-1)。這樣,演算法就可以自回歸的運算下去。卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個基本公式。根據這5個公式,可以很容易的實現計算機的程序。

Ⅶ 濾波卡爾曼演算法主要解決什麼問題

卡爾曼濾波採用遞推估計的演算法,解決包括非平穩隨機過程在內的波形的最佳線性估計,從狀態方程和測量方程著手建立其信號模型。基本特點是:1)採用了隨機過程的矢量模型;2)採用遞歸演算法。望對你有助。

Ⅷ 卡爾曼濾波中的真實值,測量值,預測值,估計值怎麼區分

卡爾曼濾波中的真實值,測量值,預測值,估計值區分方法:

1、真實值為目標運動的真實軌跡上的坐標,是理論上假設的一個參考值,不帶偏差時的真值;

2、測量值則是kalman濾波中的量測矩陣Z,是測量設備/感測器/等等測到的數值,帶有偏差;

3、預測值則是通過狀態轉移矩陣,由上一時刻的估計值得到現在時刻的預測值,即x(k|k-1)=F*x(k-1|k-1),從上一時刻的估計值出發,先驗估計出來的值,帶有偏差;

4、估計值就是經kalman濾波得到的狀態更新值x(k|k),是綜合考慮測量值和預測值,後驗估計出來的值,也有偏差,只是偏差比測量值和預測值的都小。



(8)卡爾曼演算法流程圖擴展閱讀:

卡爾曼濾波(Kalman filtering)是一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的演算法。由於觀測數據中包括系統中的雜訊和干擾的影響,所以最優估計也可看作是濾波過程。

斯坦利·施密特(Stanley Schmidt)首次實現了卡爾曼濾波器。卡爾曼在NASA埃姆斯研究中心訪問時,發現他的方法對於解決阿波羅計劃的軌道預測很有用,後來阿波羅飛船的導航電腦使用了這種濾波器。

Kalman濾波便於計算機編程實現,並能夠對現場採集的數據進行實時的更新和處理,Kalman濾波是目前應用最為廣泛的濾波方法,在通信,導航,制導與控制等多領域得到了較好的應用。

參考資料來源:網路-卡爾曼濾波

Ⅸ 卡爾曼濾波如何預測

很多人將卡爾曼濾波用在股票啊,流量啊的上面,其實不是很科學,卡爾曼濾波運用的是『慣性思維』,在普通的觀測上加入了物體的運動有慣性,加速度很難突變的條件增加准確度。而客流量這種東西並沒有慣性,除非你有相關模型,否則不是很適用卡爾曼濾波。PS:如果你做的是對於一個目標有多個觀測數據,那麼也是可以用卡爾曼濾波的,不過不需要使用狀態轉移矩陣了。對於一般的非機動目標,直接使用離散的常速CV模型作為狀態轉移矩陣,雜訊在速度引入。觀測矩陣要按實際情況,如果是做模擬,可以直接使用單位矩陣

卡爾曼濾波(Kalman filtering)一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的演算法。由於觀測數據中包括系統中的雜訊和干擾的影響,所以最優估計也可看作是濾波過程。
斯坦利·施密特(Stanley Schmidt)首次實現了卡爾曼濾波器。卡爾曼在NASA埃姆斯研究中心訪問時,發現他的方法對於解決阿波羅計劃的軌道預測很有用,後來阿波羅飛船的導航電腦使用了這種濾波器。 關於這種濾波器的論文由Swerling (1958), Kalman (1960)與 Kalman and Bucy (1961)發表。
數據濾波是去除雜訊還原真實數據的一種數據處理技術, Kalman濾波在測量方差已知的情況下能夠從一系列存在測量雜訊的數據中,估計動態系統的狀態. 由於, 它便於計算機編程實現, 並能夠對現場採集的數據進行實時的更新和處理, Kalman濾波是目前應用最為廣泛的濾波方法, 在通信, 導航, 制導與控制等多領域得到了較好的應用。
狀態估計是卡爾曼濾波的重要組成部分。一般來說,根據觀測數據對隨機量進行定量推斷就是估計問題,特別是對動態行為的狀態估計,它能實現實時運行狀態的估計和預測功能。比如對飛行器狀態估計。狀態估計對於了解和控制一個系統具有重要意義,所應用的方法屬於統計學中的估計理論。最常用的是最小二乘估計,線性最小方差估計、最小方差估計、遞推最小二乘估計等。其他如風險准則的貝葉斯估計、最大似然估計、隨機逼近等方法也都有應用。
受雜訊干擾的狀態量是個隨機量,不可能測得精確值,但可對它進行一系列觀測,並依據一組觀測值,按某種統計觀點對它進行估計。使估計值盡可能准確地接近真實值,這就是最優估計。真實值與估計值之差稱為估計誤差。若估計值的數學期望與真實值相等,這種估計稱為無偏估計。卡爾曼提出的遞推最優估計理論,採用狀態空間描述法,在演算法採用遞推形式,卡爾曼濾波能處理多維和非平穩的隨機過程。

閱讀全文

與卡爾曼演算法流程圖相關的資料

熱點內容
微贊直播用的什麼伺服器 瀏覽:540
哪個保皇app可以邀請好友 瀏覽:316
phpredis管理 瀏覽:561
程序員培養基地 瀏覽:674
linux查看bin 瀏覽:874
float賦值java 瀏覽:946
android70字體 瀏覽:941
程序員英文不好行嗎 瀏覽:868
如何使用主機伺服器pdf 瀏覽:701
打開下層文件夾代碼 瀏覽:455
適配平板的app是什麼意思 瀏覽:45
java寫一個方法 瀏覽:682
中原大學php視頻教程 瀏覽:501
沖壓模具設計pdf 瀏覽:690
程序員考哪些證 瀏覽:233
李世民命令薛收為魚作賦 瀏覽:776
阿里雲伺服器2核8g內存 瀏覽:157
phpyii框架開發文檔 瀏覽:994
視頻監控管理伺服器有什麼用 瀏覽:182
mysqlphp變數 瀏覽:289