Ⅰ 演算法研究現狀
Farmer以及Deutsch和Journel雖然在1992年就提出了多點地質統計學方法,但其主要是通過在模擬退火中加入多點統計目標函數,然後對模擬圖像進行反復迭代達到與輸入統計參數匹配。該演算法受到數據樣板大小、模擬類型值多少的影響,此外迭代收斂也是一個不可避免的問題。受計算機性能以及演算法的雙重影響,模擬速度極其緩慢。因此對該方法的應用報道很少。1993年,Guardiano et al.提出了一種非迭代演算法。它並不通過變差函數及克里金建立條件概率分布,而是直接利用數據樣板掃描訓練圖像,並根據數據樣板掃描獲得的不同數據事件出現頻率,代替數據事件的多點統計概率。即對於每一個未取樣點,通過局部條件數據構成的數據事件,掃描訓練圖像推斷局部數據事件聯合未知點的條件概率(cpdf)。該方法屬於序貫模擬的范疇,但由於每次條件概率的推斷都需要重復掃描訓練圖像,對計算機性能要求相當高,因而該方法也一直停留在實驗室階段。
多點地質統計學得到快速發展,是源於搜索樹概念的提出,即一種存儲數據事件概率的數據結構。Strebelle(2000)對Guardiano et al.的演算法進行了改進,提出將掃描訓練圖像獲得的多點概率保存在「搜索樹」里,隨後的模擬採用序貫模擬的思路。在每模擬一個未知節點時,條件概率直接從「搜索樹」里讀取,大大縮短了運算機時,使得多點統計學儲層建模真正意義上的推廣成為可能。Strebelle將此演算法命名為Snesim(Singlenormal equation simulation)。Snesim演算法推出後,立刻受到建模界的關注,成為近幾年儲層建模熱點。通過實際研究區建模,有些學者指出Snesim尚存在一些缺陷,表現在以下幾個方面:
1)訓練圖像的平穩性問題。如何將實際儲層中的大量非平穩信息表現為訓練圖像並能應用多點統計方法進行建模;
2)集成軟數據(如地震)及評估訓練圖像或軟數據的權重問題,尤其是它們在某種程度上不一致時;
3)儲層形態合理再現問題。在現有演算法中,當數據事件稀少時,往往通過去除最遠條件節點方法來獲得可靠的數據事件,而這種處理方法往往會導致儲層構型再現失敗;此外,訓練圖像過小將導致目標不連續,影響建模真實性;而訓練圖像過大則導致運行機時大,Snesim的實施存在困難;
4)多重網格搜索問題。兩點統計學的多重網格搜索方法,不能改變粗網格模擬值,而條件數據重新分配具有相當大的誤差,導致實際地質結構特徵再現效果較差;
5)由於多點地質統計學仍然是基於像元的演算法,所以只能在一定程度上重現目標的形狀,對於更復雜的如尖角或者U型目標的應用則效果較差。
對於Snesim存在的問題,不同學者通過研究提出了各自的解決方案或建議。如非平穩性問題,Caers(2002)就採取類似於變差函數套合方式,通過伸縮和旋轉變換,將非平穩的地質模式變化為平穩的地質模式,隨後採用Snesim進行建模。再如數據樣板再現,Liu(2003)就通過賦予不同節點不同權重,在數據事件稀少時,舍棄權重最小數據點以獲得可靠的數據事件,而不是Snesim中去除最遠條件節點的方式;Stien(2007)則允許刪除條件數據點的值,而不是把它從條件數據集中移去。當所有節點被模擬後,再對那些被刪掉值的點重新模擬。Suzuki(2007)提出了一種新的方法,即實時後處理方法(PRTT),其主要思想是在某一點上如果條件化失敗,不是去掉一些條件數據縮小數據模板,而是返回到上一步,對前面模擬的數據進行修改,以達到數據事件合理化。在儲層屬性及數據事件多時,Arpat(2003)、Zhang(2003)等提出聚類的思想對相似數據事件進行歸類,從而減少運行機時及不合理數據事件的出現概率。
儲層建模是對地下沉積儲層地質模式的再現。考慮到儲層建模過程,實質上是對地下儲層特徵沉積模式的重建過程。如果將各種地質模式看成是一幅圖像的構成單元,對儲層預測也就是圖像的重建過程。基於此思想,在2003年Stanford油藏預測中心舉行的會議上,Arpat提出了Simpat(Simulation with pattenrs)多點地質統計學隨機建模方法,即通過識別不同的地質模式,採用相似性判斷方法,在建模時再現這些地質模式。Simpat模擬流程採用的也是序貫模擬的思路。由於是對地質模式處理,而地質模式是通過空間多個點構成的數據事件反映的,因此,在模擬實現時以整個數據事件賦值或者數據事件的子集取代了單個模擬網格節點的賦值。也就是說,在模擬過程中,在對某個未知值的預測過程中,除了模擬節點處賦值外,用來預測節點處值的條件數據的值也會有變化。Arpat通過這種數據事件整體賦值,實現儲層地質模式再現。在數據事件選擇上,Arpat擯棄了傳統的概率推斷、蒙特卡羅抽樣的隨機建模方法,而是借鑒計算機視覺及數字圖像重建領域的知識,利用數據事件的相似性對數據事件進行選擇。Arpat對此方法進行了較詳細的論證,表明此方法能夠較好再現儲層結構特徵。在此基礎上,基於距離相似度的多點地質統計學(distance-based multiple point geostatistics)開始得到研究和發展(Suzuki et al.,2008;Scheidt et al.,2008;Honarkhah et al.,2010)。與傳統基於統計抽樣的模擬不同,基於距離相似度的方法直接計算數據事件的相似性,並用最相似的數據進行整體替換。
基於統計抽樣以及儲層模式分類的考慮,Zhang(2006)提出了Fitlersim(Filter-Based simulation)方法。他認為在訓練圖像中眾多儲層模式可以由幾個濾波函數進行描述,由濾波函數獲得儲層模式的統計得分,在此基礎上,進行儲層模式的聚類,達到降低儲層維數、提高運算效率的目的。此外,在聚類過程中考慮相似的儲層模式出現的頻率,使得儲層預測具有統計學的意義。Yin(2009)則從目標骨架提取出發,約束多點統計模式選擇,提出了基於儲層骨架的多點地質統計學方法。