㈠ 信道編譯碼包括哪些
信道編碼,也叫差錯控制編碼,是所有現代通信系統的基石。
1、信道編碼的種類主要包括:線性分組碼、卷積碼、級聯碼、Turbo碼和LDPC碼。
2、其中分組碼又分為:漢明碼,格雷碼,循環碼(BCH碼,RS碼,CRC循環冗餘校驗碼)。
幾十年來,信道編碼技術不斷逼近香農極限,波瀾壯闊般推動著人類通信邁過一個又一個頂峰,信道編碼在發送端對原數據添加冗餘信息,這些冗餘信息是和原數據相關的,再在接收端根據這種相關性來檢測和糾正傳輸過程產生的差錯,這些加入的冗餘信息就是糾錯碼,用它來對抗傳輸過程的干擾。
㈡ 信道編碼的糾錯碼的各種類型
卷積碼非常適用於糾正隨機錯誤,但是,解碼演算法本身的特性卻是:如果在解碼過程中發生錯誤,解碼器可能會導致突發性錯誤。為此在卷積碼的上部採用RS碼塊,RS碼適用於檢測和校正那些由解碼器產生的突發性錯誤。所以卷積碼和RS碼結合在一起可以起到相互補償的作用。卷積碼分為兩種:
(1)基本卷積碼:
基本卷積碼編碼效率為,η=1/2,編碼效率較低,優點是糾錯能力強。
(2)收縮卷積碼
如果傳輸信道質量較好,為提高編碼效率,可以采樣收縮截短卷積碼。有編碼效率為:η=1/2、2/3、3/4、5/6、7/8這幾種編碼效率的收縮卷積碼。
編碼效率高,一定帶寬內可傳輸的有效比特率增大,但糾錯能力越減弱。 1993年誕生的Turbo碼,單片Turbo碼的編碼/解碼器,運行速率達40Mb/s。該晶元集成了一個32×32交織器,其性能和傳統的RS外碼和卷積內碼的級聯一樣好。所以Turbo碼是一種先進的信道編碼技術,由於其不需要進行兩次編碼,所以其編碼效率比傳統的RS+卷積碼要好。
3.4GSM系統中的信道編碼
GSM系統把20ms語音編碼後的數據作為一幀,共260bit,分成50個最重要比特、132個次重要比特和78個不重要比特。
在GSM系統中,對話音編碼後的數據既進行檢錯編碼又進行糾錯編碼。如圖5所示。
首先對50個最重要比特進行循環冗餘編碼(CRC),編碼後為53bit;再將該53bit與次重要的132bit一起進行約束長度為K=5,編碼效率為R=1/2的卷積編碼,編碼後為2(53+132+4)=378bit;最後再加上最不重要的78bit,形成信道編碼後的一幀共456bit。
3.5IS-95系統中的信道編碼
(1)正向鏈路上的信道編碼
在IS-95系統中,正向鏈路上是以不同的沃爾什(Walsh)函數來區分不同的物理信道的。在用沃爾什函數進行直接擴頻調制之前,要對話音數據或信令數據進行編碼效率R=1/2、約束長度為K=9的信道編碼。由於CDMA系統是受自身干擾的系統,各業務信道上的發射功率受到嚴格的限制。當系統中使用同一頻率信道的用戶較多時,對每個用戶而言,接收信噪比就降低。所以,CDMA系統的話音編碼被設計為多速率的。當接收信噪比較高時,採用較高速率的話音編碼,以獲得較好的接收話音質量;當接收信噪比較低時,就採用較低的話音編碼速率。較低速率的話音編碼數據經卷積編碼後,可進行字元重復。語音編碼數據速率越低,卷積編碼後字元可重復的次數越多,使得在較差信道上傳輸的信號獲得更多的保護。
(2)反向鏈路上的信道編碼
IS-95系統中,反向鏈路上是用不同的長偽隨機序列來區分不同的物理信道的。在用長偽隨機序列進行直接擴頻調制之前,要對語音數據或信令數據進行編碼效率R=1/3(速率集1)或R=1/2(速率集2)、約束長度為K=9的信道編碼。由於同樣的原因,語音編碼同樣被設計為多速率的。當接收信噪比較低時。可採用較低的話音編碼速率、字元重復的方法,提高在信道上傳輸時的抗干擾性能。 在實際應用中,比特差錯經常成串發生,這是由於持續時間較長的衰落谷點會影響到幾個連續的比特,而信道編碼僅在檢測和校正單個差錯和不太長的差錯串時才最有效(如RS只能糾正8個位元組的錯誤)。為了糾正這些成串發生的比特差錯及一些突發錯誤,可以運用交織技術來分散這些誤差,使長串的比特差錯變成短串差錯,從而可以用前向碼對其糾錯,例如:在DVB-C系統中,RS(204,188)的糾錯能力是8個位元組,交織深度為12,那麼糾可抗長度為8×12=96個位元組的突發錯誤。
實現交織和解交織一般使用卷積方式
交織技術對已編碼的信號按一定規則重新排列,解交織後突發性錯誤在時間上被分散,使其類似於獨立發生的隨機錯誤,從而前向糾錯編碼可以有效的進行糾錯,前向糾錯碼加交積的作用可以理解為擴展了前向糾錯的可抗長度位元組。糾錯能力強的編碼一般要求的交織深度相對較低。糾錯能力弱的則要求更深的交織深度。
一般來說,對數據進行傳輸時,在發端先對數據進行FEC編碼,然後再進行交積處理。在收端次序和發端相反,先做去交積處理完成誤差分散,再FEC解碼實現數據糾錯。另外,從上圖可看出,交積不會增加信道的數據碼元。
根據信道的情況不同,信道編碼方案也有所不同,在DVB-T里由於由於是無線信道且存在多徑干擾和其它的干擾,所以信道很「臟」,為此它的信道編碼是:RS+外交積+卷積碼+內交積。採用了兩次交積處理的級聯編碼,增強其糾錯的能力。RS作為外編碼,其編碼效率是188/204(又稱外碼率),卷積碼作為內編碼,其編碼效率有1/2、2/3、3/4、5/6、7/8五種(又稱內碼率)選擇,信道的總編碼效率是兩種編碼效率的級聯疊加。設信道帶寬8MHZ,符號率為6.8966Ms/S,內碼率選2/3,16QAM調制,其總傳輸率是27.586Mbps,有效傳輸率是27.586*(188/204)*(2/3)=16.948Mbps,如果加上保護間隔的插入所造成的開銷,有效碼率將更低。
在DVB-C里,由於是有線信道,信道比較「干凈」,所以它的信道編碼是:RS+交積。一般DVB-C的信道物理帶寬是8MHZ,在符號率為6.8966Ms/s,調制方式為64QAM的系統,其總傳輸率是41.379Mbps,由於其編碼效率為188/204,所以其有效傳輸率是41.379*188/204=38.134Mbps。
在DVB-S里,由於它是無線信道,所以它的信道編碼是:RS+交積+卷積碼。也是級聯編碼。
下圖是DVB-T、DVB-C、DVB-S各自的信道編碼方式: 進行基帶信號傳輸的缺點是其頻譜會因數據出現連「1」和連「0」而包含大的低頻成分,不適應信道的傳輸特性,也不利於從中提取出時鍾信息。解決辦法之一是採用擾碼技術,使信號受到隨機化處理,變為偽隨機序列,又稱為「數據隨機化」和「能量擴散」處理。擾碼不但能改善位定時的恢復質量,還可以使信號頻譜平滑,使幀同步和自適應同步和自適應時域均衡等系統的性能得到改善。
擾碼雖然「擾亂」了原有數據的本來規律,但因為是人為的「擾亂」,在接收端很容易去加擾,恢復成原數據流。
實現加擾和解碼,需要產生偽隨機二進制序列(PRBS)再與輸入數據逐個比特作運算。PRBS也稱為m序列,這種m序列與TS的數據碼流進行模2加運算後,數據流中的「1」和「0」的連續遊程都很短,且出現的概率基本相同。
利用偽隨機序列進行擾碼也是實現數字信號高保密性傳輸的重要手段之一。一般將信源產生的二進制數字信息和一個周期很長的偽隨即序列模2相加,就可將原信息變成不可理解的另一序列。這種信號在信道中傳輸自然具有高度保密性。在接收端將接收信號再加上(模2和)同樣的偽隨機序列,就恢復為原來發送的信息。
在DVB-C系統中的CA系統原理就源於此,只不過為了加強系統的保密性,其偽隨機序列是不斷變化的(10秒變一次),這個偽隨機序列又叫控制字(CW)。
現在出現一種新的信道編碼方法。LDPC編碼。LDPC編碼是最接近香農定理的一種編碼。