A. 兩位數乘兩位數的快速演算法
兩位數乘兩位數的快速演算法如下:
先用一個乘數個位上的數去乘另一個乘數,得數的末位與乘數的個位對齊,再用這個乘數十歷拆拿位上的數依次去乘另一個乘數,得數的末位與乘數的十位對齊,最後,把兩次所得的結果相加。
乘法(multiplication)是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數(包括負數),有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。
乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。 矩形的區域不取決於首先測量哪一側,這說明了交換屬性。 兩種測量的產物是一種御蔽新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
4、數學不僅是一門科學,而且是一種普遍適用的技術。它是科學的大門和鑰匙,學數學是令自己變得理性的一個很重要的措施,數學本身也有自身的樂趣。
5、數學能讓你思考任何問題的時候都比較縝密,而不至於思緒紊亂。還能使你的腦子反映靈活,對突發事件的處理手段也更理性。
B. 乘法怎樣算最簡便
你好,我覺得乘法運算使用乘法的幾個簡便演算法最簡便。主要是:
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
例1 計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2 計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3 計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4 計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5 計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
C. 多位數乘法的快速計算方法有哪些
多位數乘法的快速計算方法如下:
1、 十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位。
2、 頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位。
3、 第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位。
4、 幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861
5、 11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一。
乘法原理:
如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。
在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。
設 A是 m×n 的矩陣。
可以通過證明 Ax=0 和A'Ax=0 兩個n元齊次方程同解證得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故兩個方程是同解的。
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以綜上 r(A)=r(A')=r(AA')=r(A'A)
D. 兩位數乘法速算方法與技巧
①頭乘頭,尾加尾,尾乘尾、②一個頭加1後,頭乘頭,尾乘尾、③頭互補,尾相同、④一個頭加1後,頭乘頭,尾乘尾,以上四個就是兩位數乘兩位數的速算方法
③頭乘頭加尾,尾乘尾:這句話的意思就是頭互補,尾相同,末同首和十,個位數完全相同,十位數剛好相加等於10 的時候則可以直接使用。這一點需要注意的是兩數相同的各個位數之積為得數的後兩位數,不足10的時候,在十位上補0就可以了。
④一個頭加1後,頭乘頭,尾乘尾:第一個數乘數互補,另外一個乘數數字相同的時候使用,這一點也要注意一個知識點,那就是個位相乘,不夠兩位數的時候要用0來佔位。