A. 幾種主要類聚方法的比較和試驗
引言 聚類分析是人類的區分標志之一,從孩提時代開始,一個人就下意識地學會區分動植物,並且不斷改進。這一原理在如今不少領域得到了相應的研究和應用,比如模式識別、數據分析、圖像處理、Web文檔分類等。 將物理或抽象對象的集合分成由類似的對象組成的多個類的過程被稱為聚類。由聚類所生成的簇是一組數據對象的集合,這些對象與同一個簇中的對象彼此相似,與其他簇中的對象相異。「物以類聚,人以群分」,在自然科學和社會科學中,存在著大量的分類問題。 聚類技術正在蓬勃發展,對此有貢獻的研究領域包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等。各種聚類方法也被不斷提出和改進,而不同的方法適合於不同類型的數據,因此對各種聚類方法、聚類效果的比較成為值得研究的課題。 1 聚類演算法的分類 現在有很多的聚類演算法,而在實際應用中,正確選擇聚類演算法的則取決於數據的類型、聚類的目的等因素。如果聚類分析被用作描述或探查的工具,可以對同樣的數據嘗試多種演算法,以發現數據可能揭示的結果。 已知的聚類演算法可以大致劃分為以下幾類:劃分方法、層次方法、基於密度的方法、基於網格的方法和基於模型的方法。 每一個類型的演算法都被廣泛地應用著,例如:劃分方法中的k-means聚類演算法、層次方法中的凝聚型層次聚類演算法、基於模型方法中的神經網路聚類演算法等。 聚類問題的研究早已不再局限於上述的硬聚類,即每一個數據只能被歸為一類,模糊聚類也是聚類分析中研究較為廣泛的一個「流派」。模糊聚類通過隸屬函數來確定每個數據隸屬於各個簇的程度,而不是將一個數據對象硬性地歸類到某一簇中。目前已有很多關於模糊聚類的演算法被提出,如FCM演算法。 本文主要分析和比較k-means聚類演算法、凝聚型層次聚類演算法、神經網路聚類演算法之SOM,以及模糊聚類的FCM演算法。通過通用測試數據集進行聚類效果的比較和分析。 2 四種常用聚類演算法研究 2.1 k-means聚類演算法 k-means是劃分方法中較經典的聚類演算法之一。該演算法的效率高,使得在對大規模數據進行聚類時廣泛應用。目前,許多演算法均圍繞著該演算法進行擴展和改進。 k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。k-means演算法的處理過程如下:首先,隨機地選擇k個對象,每個對象初始地代表了一個簇的平均值或中心;對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;然後重新計算每個簇的平均值。這個過程不斷重復,直到准則函數收斂。通常,採用平方誤差准則,其定義如下: 這里E是資料庫中所有對象的平方誤差的總和,p是空間中的點,mi是簇Ci的平均值。該目標函數使生成的簇盡可能緊湊獨立,使用的距離度量是歐幾里得距離,當然也可以用其他距離度量。k-means聚類演算法的演算法流程如下: 輸入:包含n個對象的資料庫和簇的數目k; 輸出:k個簇,使平方誤差准則最小。 步驟: (1) 任意選擇k個對象作為初始的簇中心; (2) repeat; (3) 根據簇中對象的平均值,將每個對象(重新)賦予最類似的簇; (4) 更新簇的平均值,即計算每個簇中對象的平均值; (5) until不再發生變化。 2.2 層次聚類演算法 根據層次分解的順序,層次聚類演算法分為凝聚的層次聚類演算法和分裂的層次聚類演算法。 凝聚型層次聚類的策略是先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。絕大多數層次聚類屬於凝聚型層次聚類,它們只是在簇間相似度的定義上有所不同。四種廣泛採用的簇間距離度量方法如下: 這里給出採用最小距離的凝聚層次聚類演算法流程: (1) 將每個對象看作一類,計算兩兩之間的最小距離; (2) 將距離最小的兩個類合並成一個新類; (3) 重新計算新類與所有類之間的距離; (4) 重復(2)、(3),直到所有類最後合並成一類。 2.3 SOM聚類演算法 SOM神經網路是由芬蘭神經網路專家Kohonen教授提出的,該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。 SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。 演算法流程: (1) 網路初始化,對輸出層每個節點權重賦初值; (2) 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量; (3) 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏; (4) 提供新樣本、進行訓練; (5) 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。 2.4 FCM聚類演算法 1965年美國加州大學柏克萊分校的扎德教授第一次提出了『集合』的概念。經過十多年的發展,模糊集合理論漸漸被應用到各個實際應用方面。為克服非此即彼的分類缺點,出現了以模糊集合論為數學基礎的聚類分析。用模糊數學的方法進行聚類分析,就是模糊聚類分析。 FCM演算法是一種以隸屬度來確定每個數據點屬於某個聚類程度的演算法。該聚類演算法是傳統硬聚類演算法的一種改進。 演算法流程: (1) 標准化數據矩陣; (2) 建立模糊相似矩陣,初始化隸屬矩陣; (3) 演算法開始迭代,直到目標函數收斂到極小值; (4) 根據迭代結果,由最後的隸屬矩陣確定數據所屬的類,顯示最後的聚類結果。 3 試驗 3.1 試驗數據 實驗中,選取專門用於測試分類、聚類演算法的國際通用的UCI資料庫中的IRIS數據集,IRIS數據集包含150個樣本數據,分別取自三種不同的鶯尾屬植物setosa、versicolor和virginica的花朵樣本,每個數據含有4個屬性,即萼片長度、萼片寬度、花瓣長度,單位為cm。在數據集上執行不同的聚類演算法,可以得到不同精度的聚類結果。 3.2 試驗結果說明 文中基於前面所述各演算法原理及演算法流程,用matlab進行編程運算,得到表1所示聚類結果。 如表1所示,對於四種聚類演算法,按三方面進行比較: (1)聚錯樣本數:總的聚錯的樣本數,即各類中聚錯的樣本數的和; (2)運行時間:即聚類整個過程所耗費的時間,單位為s; (3)平均准確度:設原數據集有k個類,用ci表示第i類,ni為ci中樣本的個數,mi為聚類正確的個數,則mi/ni為第i類中的精度,則平均精度為: 3.3 試驗結果分析 四種聚類演算法中,在運行時間及准確度方面綜合考慮,k-means和FCM相對優於其他。但是,各個演算法還是存在固定缺點:k-means聚類演算法的初始點選擇不穩定,是隨機選取的,這就引起聚類結果的不穩定,本實驗中雖是經過多次實驗取的平均值,但是具體初始點的選擇方法還需進一步研究;層次聚類雖然不需要確定分類數,但是一旦一個分裂或者合並被執行,就不能修正,聚類質量受限制;FCM對初始聚類中心敏感,需要人為確定聚類數,容易陷入局部最優解;SOM與實際大腦處理有很強的理論聯系。但是處理時間較長,需要進一步研究使其適應大型資料庫。 4 結語 聚類分析因其在許多領域的成功應用而展現出誘人的應用前景,除經典聚類演算法外,各種新的聚類方法正被不斷被提出。
該文章僅供學習參考使用,版權歸作者所有。
B. kmeans聚類演算法是什麼
k均值聚類演算法是一種迭代求解的聚類分析演算法,由於簡潔和效率使得他成為所有聚類演算法中最廣泛使用的。k均值聚類演算法通過給定一個數據點集合和需要的聚類數目k,k由用戶指定,k均值演算法根據某個距離函數反復把數據分入k個聚類中。
k均值聚類演算法的具體步驟:
其步驟是預將數據分為K組,則隨機選取K個對象作為初始的聚類中心,然後計算每個對象與各個種子聚類中心之間的距離,把每個對象分配給距離它最近的聚類中心。聚類中心以及分配給它們的對象就代表一個聚類。
每分配一個樣本,聚類的聚類中心會根據聚類中現有的對象被重新計算。這個過程將不斷重復直到滿足某個終止條件。終止條件可以是沒有(或最小數目)對象被重新分配給不同的聚類,沒有(或最小數目)聚類中心再發生變化,誤差平方和局部最小。
C. 有哪些常用的聚類演算法
劃分法
劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:
(1) 每一個分組至少包含一個數據紀錄;
(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);
對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。
大部分劃分方法是基於距離的。給定要構建的分區數k,劃分方法首先創建一個初始化劃分。然後,它採用一種迭代的重定位技術,通過把對象從一個組移動到另一個組來進行劃分。一個好的劃分的一般准備是:同一個簇中的對象盡可能相互接近或相關,而不同的簇中的對象盡可能遠離或不同。還有許多評判劃分質量的其他准則。傳統的劃分方法可以擴展到子空間聚類,而不是搜索整個數據空間。當存在很多屬性並且數據稀疏時,這是有用的。為了達到全局最優,基於劃分的聚類可能需要窮舉所有可能的劃分,計算量極大。實際上,大多數應用都採用了流行的啟發式方法,如k-均值和k-中心演算法,漸近的提高聚類質量,逼近局部最優解。這些啟發式聚類方法很適合發現中小規模的資料庫中小規模的資料庫中的球狀簇。為了發現具有復雜形狀的簇和對超大型數據集進行聚類,需要進一步擴展基於劃分的方法。[1]
使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法;
層次法
層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。
例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。
層次聚類方法可以是基於距離的或基於密度或連通性的。層次聚類方法的一些擴展也考慮了子空間聚類。層次方法的缺陷在於,一旦一個步驟(合並或分裂)完成,它就不能被撤銷。這個嚴格規定是有用的,因為不用擔心不同選擇的組合數目,它將產生較小的計算開銷。然而這種技術不能更正錯誤的決定。已經提出了一些提高層次聚類質量的方法。[1]
代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等;
密度演算法
基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
這個方法的指導思想就是,只要一個區域中的點的密度大過某個閾值,就把它加到與之相近的聚類中去。
代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等;
圖論聚類法
圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。
網格演算法
基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。
代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;
模型演算法
基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。
通常有兩種嘗試方向:統計的方案和神經網路的方案。
D. 四種聚類方法之比較
四種聚類方法之比較
介紹了較為常見的k-means、層次聚類、SOM、FCM等四種聚類演算法,闡述了各自的原理和使用步驟,利用國際通用測試數據集IRIS對這些演算法進行了驗證和比較。結果顯示對該測試類型數據,FCM和k-means都具有較高的准確度,層次聚類准確度最差,而SOM則耗時最長。
關鍵詞:聚類演算法;k-means;層次聚類;SOM;FCM
聚類分析是一種重要的人類行為,早在孩提時代,一個人就通過不斷改進下意識中的聚類模式來學會如何區分貓狗、動物植物。目前在許多領域都得到了廣泛的研究和成功的應用,如用於模式識別、數據分析、圖像處理、市場研究、客戶分割、Web文檔分類等[1]。
聚類就是按照某個特定標准(如距離准則)把一個數據集分割成不同的類或簇,使得同一個簇內的數據對象的相似性盡可能大,同時不在同一個簇中的數據對象的差異性也盡可能地大。即聚類後同一類的數據盡可能聚集到一起,不同數據盡量分離。
聚類技術[2]正在蓬勃發展,對此有貢獻的研究領域包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等。各種聚類方法也被不斷提出和改進,而不同的方法適合於不同類型的數據,因此對各種聚類方法、聚類效果的比較成為值得研究的課題。
1 聚類演算法的分類
目前,有大量的聚類演算法[3]。而對於具體應用,聚類演算法的選擇取決於數據的類型、聚類的目的。如果聚類分析被用作描述或探查的工具,可以對同樣的數據嘗試多種演算法,以發現數據可能揭示的結果。
主要的聚類演算法可以劃分為如下幾類:劃分方法、層次方法、基於密度的方法、基於網格的方法以及基於模型的方法[4-6]。
每一類中都存在著得到廣泛應用的演算法,例如:劃分方法中的k-means[7]聚類演算法、層次方法中的凝聚型層次聚類演算法[8]、基於模型方法中的神經網路[9]聚類演算法等。
目前,聚類問題的研究不僅僅局限於上述的硬聚類,即每一個數據只能被歸為一類,模糊聚類[10]也是聚類分析中研究較為廣泛的一個分支。模糊聚類通過隸屬函數來確定每個數據隸屬於各個簇的程度,而不是將一個數據對象硬性地歸類到某一簇中。目前已有很多關於模糊聚類的演算法被提出,如著名的FCM演算法等。
本文主要對k-means聚類演算法、凝聚型層次聚類演算法、神經網路聚類演算法之SOM,以及模糊聚類的FCM演算法通過通用測試數據集進行聚類效果的比較和分析。
2 四種常用聚類演算法研究
2.1 k-means聚類演算法
k-means是劃分方法中較經典的聚類演算法之一。由於該演算法的效率高,所以在對大規模數據進行聚類時被廣泛應用。目前,許多演算法均圍繞著該演算法進行擴展和改進。
k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。k-means演算法的處理過程如下:首先,隨機地選擇k個對象,每個對象初始地代表了一個簇的平均值或中心;對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;然後重新計算每個簇的平均值。這個過程不斷重復,直到准則函數收斂。通常,採用平方誤差准則,其定義如下:
這里E是資料庫中所有對象的平方誤差的總和,p是空間中的點,mi是簇Ci的平均值[9]。該目標函數使生成的簇盡可能緊湊獨立,使用的距離度量是歐幾里得距離,當然也可以用其他距離度量。k-means聚類演算法的演算法流程如下:
輸入:包含n個對象的資料庫和簇的數目k;
輸出:k個簇,使平方誤差准則最小。
步驟:
(1) 任意選擇k個對象作為初始的簇中心;
(2) repeat;
(3) 根據簇中對象的平均值,將每個對象(重新)賦予最類似的簇;
(4) 更新簇的平均值,即計算每個簇中對象的平均值;
(5) until不再發生變化。
2.2 層次聚類演算法
根據層次分解的順序是自底向上的還是自上向下的,層次聚類演算法分為凝聚的層次聚類演算法和分裂的層次聚類演算法。
凝聚型層次聚類的策略是先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。絕大多數層次聚類屬於凝聚型層次聚類,它們只是在簇間相似度的定義上有所不同。四種廣泛採用的簇間距離度量方法如下:
這里給出採用最小距離的凝聚層次聚類演算法流程:
(1) 將每個對象看作一類,計算兩兩之間的最小距離;
(2) 將距離最小的兩個類合並成一個新類;
(3) 重新計算新類與所有類之間的距離;
(4) 重復(2)、(3),直到所有類最後合並成一類。
2.3 SOM聚類演算法
SOM神經網路[11]是由芬蘭神經網路專家Kohonen教授提出的,該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。
SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。
演算法流程:
(1) 網路初始化,對輸出層每個節點權重賦初值;
(2) 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;
(3) 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;
(4) 提供新樣本、進行訓練;
(5) 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。
2.4 FCM聚類演算法
1965年美國加州大學柏克萊分校的扎德教授第一次提出了『集合』的概念。經過十多年的發展,模糊集合理論漸漸被應用到各個實際應用方面。為克服非此即彼的分類缺點,出現了以模糊集合論為數學基礎的聚類分析。用模糊數學的方法進行聚類分析,就是模糊聚類分析[12]。
FCM演算法是一種以隸屬度來確定每個數據點屬於某個聚類程度的演算法。該聚類演算法是傳統硬聚類演算法的一種改進。
演算法流程:
(1) 標准化數據矩陣;
(2) 建立模糊相似矩陣,初始化隸屬矩陣;
(3) 演算法開始迭代,直到目標函數收斂到極小值;
(4) 根據迭代結果,由最後的隸屬矩陣確定數據所屬的類,顯示最後的聚類結果。
3 四種聚類演算法試驗
3.1 試驗數據
實驗中,選取專門用於測試分類、聚類演算法的國際通用的UCI資料庫中的IRIS[13]數據集,IRIS數據集包含150個樣本數據,分別取自三種不同的鶯尾屬植物setosa、versicolor和virginica的花朵樣本,每個數據含有4個屬性,即萼片長度、萼片寬度、花瓣長度,單位為cm。在數據集上執行不同的聚類演算法,可以得到不同精度的聚類結果。
3.2 試驗結果說明
文中基於前面所述各演算法原理及演算法流程,用matlab進行編程運算,得到表1所示聚類結果。
如表1所示,對於四種聚類演算法,按三方面進行比較:(1)聚錯樣本數:總的聚錯的樣本數,即各類中聚錯的樣本數的和;(2)運行時間:即聚類整個過程所耗費的時間,單位為s;(3)平均准確度:設原數據集有k個類,用ci表示第i類,ni為ci中樣本的個數,mi為聚類正確的個數,則mi/ni為第i類中的精度,則平均精度為:
3.3 試驗結果分析
四種聚類演算法中,在運行時間及准確度方面綜合考慮,k-means和FCM相對優於其他。但是,各個演算法還是存在固定缺點:k-means聚類演算法的初始點選擇不穩定,是隨機選取的,這就引起聚類結果的不穩定,本實驗中雖是經過多次實驗取的平均值,但是具體初始點的選擇方法還需進一步研究;層次聚類雖然不需要確定分類數,但是一旦一個分裂或者合並被執行,就不能修正,聚類質量受限制;FCM對初始聚類中心敏感,需要人為確定聚類數,容易陷入局部最優解;SOM與實際大腦處理有很強的理論聯系。但是處理時間較長,需要進一步研究使其適應大型資料庫。
聚類分析因其在許多領域的成功應用而展現出誘人的應用前景,除經典聚類演算法外,各種新的聚類方法正被不斷被提出。
E. 聚類演算法的具體方法
k-means 演算法接受輸入量 k ;然後將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」(引力中心)來進行計算的。
k-means 演算法的工作過程說明如下:
首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;
然後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。
一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。 K-MEANS有其缺點:產生類的大小相差不會很大,對於臟數據很敏感。
改進的演算法:k—medoids 方法。這兒選取一個對象叫做mediod來代替上面的中心的作用,這樣的一個medoid就標識了這個類。K-medoids和K-means不一樣的地方在於中心點的選取,在K-means中,我們將中心點取為當前cluster中所有數據點的平均值,在 K-medoids演算法中,我們將從當前cluster 中選取這樣一個點——它到其他所有(當前cluster中的)點的距離之和最小——作為中心點。
步驟:
1,任意選取K個對象作為medoids(O1,O2,…Oi…Ok)。
以下是循環的:
2,將餘下的對象分到各個類中去(根據與medoid最相近的原則);
3,對於每個類(Oi)中,順序選取一個Or,計算用Or代替Oi後的消耗—E(Or)。選擇E最小的那個Or來代替Oi。這樣K個medoids就改變了,下面就再轉到2。
4,這樣循環直到K個medoids固定下來。
這種演算法對於臟數據和異常數據不敏感,但計算量顯然要比K均值要大,一般只適合小數據量。 上面提到K-medoids演算法不適合於大數據量的計算。Clara演算法,這是一種基於采樣的方法,它能夠處理大量的數據。
Clara演算法的思想就是用實際數據的抽樣來代替整個數據,然後再在這些抽樣的數據上利用K-medoids演算法得到最佳的medoids。Clara演算法從實際數據中抽取多個采樣,在每個采樣上都用K-medoids演算法得到相應的(O1, O2 … Oi … Ok),然後在這當中選取E最小的一個作為最終的結果。 Clara演算法的效率取決於采樣的大小,一般不太可能得到最佳的結果。
在Clara演算法的基礎上,又提出了Clarans的演算法,與Clara演算法不同的是:在Clara演算法尋找最佳的medoids的過程中,采樣都是不變的。而Clarans演算法在每一次循環的過程中所採用的采樣都是不一樣的。
與上面所講的尋找最佳medoids的過程不同的是,必須人為地來限定循環的次數。
F. 聚類分析法(CA)
3.2.3.1 技術原理
聚類分析又稱群分析(CA),它是研究(對樣品或指標)分類問題的一種多元統計方法。首先認為所研究的樣品或指標(變數)之間存在著程度不同的相似性(親疏關系),根據一批樣品的多個觀測指標具體找出一些能夠度量樣品或指標之間相似程度的統計量,以這些統計量為劃分類型的依據,把一些相似程度較大的樣品(或指標)聚合為一類,把另一些彼此之間相似程度較大的樣品(或指標)聚合為另一類,根據分類對象不同,可分為對樣品分類的Q型聚類分析和對指標分類的R型聚類分析兩種類型。聚類分析可用SPSS軟體直接實現,在水質時空變異、水化學類型分區中得到廣泛的應用。聚類分析的功能是建立一種分類方法,它將一批樣品或變數,按照它們在性質上的親疏、相似程度進行分類,聚類分析的內容十分豐富,按其聚類的方法可分為以下幾種:系統聚類法、調優法、最優分割法、模糊聚類法等。
聚類分析根據分類對象的不同又分為R型和Q型兩大類,R型是對變數(指標)進行分類,Q型是對樣品進行分類。為了對樣品(或變數)進行分類,就必須研究它們之間的關系,描述樣品間親疏相似程度的統計量很多,目前用得最多的是距離和相似系數。距離方法主要有:閔科夫斯基(Minkowski)距離、絕對值距離、歐氏距離等。
樣品間的親疏程度除了用距離描述外,也可用相似系數來表示,相似系數的構造主要有以下兩種方法:對於定量變數,我們通常採用的相似系數有xi和xj之間的夾角餘弦和相關系數。
3.2.3.2 方法流程
目前使用最多的聚類方法是系統聚類法,其基本思想是:先將n個樣品各自看成一類,共有n個類,然後計算類與類間的距離,選擇距離最小的兩類合並成一個新類,使總類數減少為n-1,接著再計算這n-1類兩兩間的距離,從中找出距離最近的兩類合並,總類數又減少一個,剩下n-2個類,照此下去,每合並一次,減少一類,直至所有樣品都合並成一類為止。在並類的過程當中,可以根據聚類的先後以及並類時兩類間的距離,畫出能直觀反映各樣品間相近和疏遠程度的聚類圖(也稱譜系圖),根據這張聚類圖有可能找到最合適的分類方案。系統聚類法的聚類原則決定於樣品間的距離(或相似系數)及類間距離的定義,類間距離的不同定義就產生了不同的系統聚類分析方法,類間距離的定義方法主要有最短距離法、最長距離法、中間距離法、重心法、類平均法。在合理地選定(或定義)樣品間的距離以後,再適當定義類間的距離,就確定了一種聚類規則,之後按照系統聚類法的一般步驟加以聚類(圖3.4)。
圖3.4 聚類分析技術流程圖
3.2.3.3 適用范圍
聚類分析能夠將變數及樣本按照相應的規則進行分類,在大樣本多參數數據降維方面具有相對的優勢,尤其是對於在時間、空間上具有復雜變化的數據,聚類分析能夠根據變數和樣本的相關性和相似性,將數據有效地劃分為不同的類別,並通過樹狀圖反映出樣品隨距離或變數間相似性變化的情況,為查清變數和樣品之間關系提供了依據,也為查明污染來源奠定了基礎。
G. 聚類演算法有哪幾種
聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
其流程如下:
(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;
(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;
(3)重新計算每個(有變化)聚類的均值(中心對象);
(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。
優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。
缺點:
1. K 是事先給定的,但非常難以選定;
2. 初始聚類中心的選擇對聚類結果有較大的影響。
H. 怎麼用python進行聚類分析
、K均值聚類K-Means演算法思想簡單,效果卻很好,是最有名的聚類演算法。聚類演算法的步驟如下:1:初始化K個樣本作為初始聚類中心;2:計算每個樣本點到K個中心的距離,選擇最近的中心作為其分類,直到所有樣本點分類完畢;3:分別計算K個類中所有樣本的質心,作為新的中心點,完成一輪迭代。通常的迭代結束條件為新的質心與之前的質心偏移值小於一
I. 常用的聚類方法有哪幾種
聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。
1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。
2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。
3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。
5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。
6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。
(9)聚類演算法流程圖擴展閱讀:
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。
它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。
許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。
J. 譜聚類演算法的演算法步驟
譜聚類演算法將數據集中的每個對象看作是圖的頂點V,將頂點間的相似度量化作為相應頂點連接邊E的權值,這樣就得到一個基於相似度的無向加權圖G(V, E),於是聚類問題就可以轉化為圖的劃分問題。基於圖論的最優劃分准則就是使劃分成的子圖內部相似度最大,子圖之間的相似度最小。
雖然根據不同的准則函數及譜映射方法,譜聚類演算法有著不同的具體實現方法,但是這些實現方法都可以歸納為下面三個主要步驟:
1) 構建表示對象集的相似度矩陣W;
2) 通過計算相似度矩陣或拉普拉斯矩陣的前k個特徵值與特徵向量,構建特徵向量空間;
3) 利用K-means或其它經典聚類演算法對特徵向量空間中的特徵向量進行聚類。
上面的步驟只是譜聚類演算法的一個總體框架,由於劃分准則、相似度矩陣計算方法等因素的差別,具體的演算法實現同樣會有所差別,但其本質依然是圖劃分問題的連續放鬆形式。