導航:首頁 > 源碼編譯 > 程序員高級演算法

程序員高級演算法

發布時間:2025-03-16 01:42:15

程序員必須掌握哪些演算法

一.基本演算法:

枚舉. (poj1753,poj2965)

貪心(poj1328,poj2109,poj2586)

遞歸和分治法.

遞推.

構造法.(poj3295)

模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)

二.圖演算法:

圖的深度優先遍歷和廣度優先遍歷.

最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓撲排序 (poj1094)

二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)

最大流的增廣路演算法(KM演算法). (poj1459,poj3436)

三.數據結構.

串 (poj1035,poj3080,poj1936)

排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)

簡單並查集的應用.

哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼樹(poj3253)



trie樹(靜態建樹、動態建樹) (poj2513)

四.簡單搜索

深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)

廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)

簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)

五.動態規劃

背包問題. (poj1837,poj1276)

型如下表的簡單DP(可參考lrj的書 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學

組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.

幾何公式.

叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)

多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)

中級(校賽壓軸及省賽中等難度):
一.基本演算法:

C++的標准模版庫的應用. (poj3096,poj3007)

較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)

二.圖演算法:

差分約束系統的建立和求解. (poj1201,poj2983)

最小費用最大流(poj2516,poj2516,poj2195)

雙連通分量(poj2942)

強連通分支及其縮點.(poj2186)

圖的割邊和割點(poj3352)

最小割模型、網路流規約(poj3308)

三.數據結構.

線段樹. (poj2528,poj2828,poj2777,poj2886,poj2750)

靜態二叉檢索樹. (poj2482,poj2352)

樹狀樹組(poj1195,poj3321)

RMQ. (poj3264,poj3368)

並查集的高級應用. (poj1703,2492)

KMP演算法. (poj1961,poj2406)

四.搜索

最優化剪枝和可行性剪枝

搜索的技巧和優化 (poj3411,poj1724)

記憶化搜索(poj3373,poj1691)

五.動態規劃

較為復雜的動態規劃(如動態規劃解特別的旅行商TSP問題等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
記錄狀態的動態規劃. (POJ3254,poj2411,poj1185)

樹型動態規劃(poj2057,poj1947,poj2486,poj3140)

六.數學

組合數學:
1.容斥原理.
2.抽屜原理.
3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026).
4.遞推關系和母函數.
數學.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率問題. (poj3071,poj3440)
3.GCD、擴展的歐幾里德(中國剩餘定理) (poj3101)
計算方法.
1.0/1分數規劃. (poj2976)
2.三分法求解單峰(單谷)的極值.
3.矩陣法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
隨機化演算法(poj3318,poj2454)
雜題(poj1870,poj3296,poj3286,poj1095)
七.計算幾何學.

坐標離散化.

掃描線演算法(例如求矩形的面積和周長並,常和線段樹或堆一起使用)
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
多邊形的內核(半平面交)(poj3130,poj3335)

幾何工具的綜合應用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)

高級(regional中等難度):
一.基本演算法要求:

代碼快速寫成,精簡但不失風格

(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)

保證正確性和高效性. poj3434

二.圖演算法:

度限制最小生成樹和第K最短路. (poj1639)

最短路,最小生成樹,二分圖,最大流問題的相關理論(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
最優比率生成樹. (poj2728)

最小樹形圖(poj3164)

次小生成樹.

無向圖、有向圖的最小環

三.數據結構.

trie圖的建立和應用. (poj2778)

LCA和RMQ問題(LCA(最近公共祖先問題) 有離線演算法(並查集+dfs) 和 在線演算法(RMQ+dfs)).(poj1330)
雙端隊列和它的應用(維護一個單調的隊列,常常在動態規劃中起到優化狀態轉移的目的). (poj2823)
左偏樹(可合並堆).

後綴樹(非常有用的數據結構,也是賽區考題的熱點).(poj3415,poj3294)
四.搜索

較麻煩的搜索題目訓練(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)

廣搜的狀態優化:利用M進制數存儲狀態、轉化為串用hash表判重、按位壓縮存儲狀態、雙向廣搜、A*演算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)

深搜的優化:盡量用位運算、一定要加剪枝、函數參數盡可能少、層數不易過大、可以考慮雙向搜索或者是輪換搜索、IDA*演算法. (poj3131,poj2870,poj2286)

五.動態規劃

需要用數據結構優化的動態規劃.(poj2754,poj3378,poj3017)
四邊形不等式理論.

較難的狀態DP(poj3133)

六.數學

組合數學.
1.MoBius反演(poj2888,poj2154)
2.偏序關系理論.
博奕論.
1.極大極小過程(poj3317,poj1085)
2.Nim問題.
七.計算幾何學.

半平面求交(poj3384,poj2540)

可視圖的建立(poj2966)

點集最小圓覆蓋.

對踵點(poj2079)

Ⅱ 程序員必須掌握哪些演算法

  1. A搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。

  2. 集束搜索(又名定向搜索,BeamSearch)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

  3. 二分查找(BinarySearch)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

  4. 分支界定演算法(BranchandBound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

  5. Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

  6. 數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

  7. Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

  8. Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

  9. 離散微分演算法(Discretedifferentiation)

  10. 動態規劃演算法(DynamicProgramming)——展示互相覆蓋的子問題和最優子架構演算法

  11. 歐幾里得演算法(Euclideanalgorithm)——計算兩個整數的最大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。

  12. 期望-最大演算法(Expectation-maximizationalgorithm,又名EM-Training)——在統計計算中,期望-最大演算法在概率模型中尋找可能性最大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其最大可能估計值;第二步是最大化,最大化在第一步上求得的最大可能值來計算參數的值。

  13. 快速傅里葉變換(FastFouriertransform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

  14. 梯度下降(Gradientdescent)——一種數學上的最優化演算法。

  15. 哈希演算法(Hashing)

  16. 堆排序(Heaps)

  17. Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。

  18. LLL演算法(Lenstra-Lenstra-Lovaszlatticerection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。

  19. 最大流量演算法(Maximumflow)——該演算法試圖從一個流量網路中找到最大的流。它優勢被定義為找到這樣一個流的值。最大流問題可以看作更復雜的網路流問題的特定情況。最大流與網路中的界面有關,這就是最大流-最小截定理(Max-flowmin-cuttheorem)。Ford-Fulkerson能找到一個流網路中的最大流。

  20. 合並排序(MergeSort)

  21. 牛頓法(Newton'smethod)——求非線性方程(組)零點的一種重要的迭代法。

  22. Q-learning學習演算法——這是一種通過學習動作值函數(action-valuefunction)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

  23. 兩次篩法(QuadraticSieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法NumberFieldSieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。

  24. RANSAC——是「RANdomSAmpleConsensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

  25. RSA——公鑰加密演算法。首個適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

  26. Schönhage-Strassen演算法——在數學中,Schönhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(Nlog(N)log(log(N))),該演算法使用了傅里葉變換。

  27. 單純型演算法(SimplexAlgorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待最大化(或最小化)的固定線性函數。

  28. 奇異值分解(Singularvaluedecomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdeterminedlinearsystems)、矩陣逼近、數值天氣預報等等。

  29. 求解線性方程組()——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordanelimination),或是柯列斯基分解(Choleskydecomposition)。

  30. Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域(homogenousregion),看看它是否屬於邊緣,還是是一個頂點。

  31. 合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:

  32. 查找:判斷某特定元素屬於哪個組。

  33. 合並:聯合或合並兩個組為一個組。

  34. 維特比演算法(Viterbialgorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

Ⅲ 程序員都應該精通的六種演算法,你會了嗎

對於一名優秀的程序員來說,面對一個項目的需求的時候,一定會在腦海里浮現出最適合解決這個問題的方法是什麼,選對了演算法,就會起到事半功倍的效果,反之,則可能會使程序運行效率低下,還容易出bug。因此,熟悉掌握常用的演算法,是對於一個優秀程序員最基本的要求。


那麼,常用的演算法都有哪些呢?一般來講,在我們日常工作中涉及到的演算法,通常分為以下幾個類型:分治、貪心、迭代、枚舉、回溯、動態規劃。下面我們來一一介紹這幾種演算法。


一、分治演算法


分治演算法,顧名思義,是將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。


分治演算法一般分為三個部分:分解問題、解決問題、合並解。

分治演算法適用於那些問題的規模縮小到一定程度就可以解決、並且各子問題之間相互獨立,求出來的解可以合並為該問題的解的情況。


典型例子比如求解一個無序數組中的最大值,即可以採用分治演算法,示例如下:


def pidAndConquer(arr,leftIndex,rightIndex):

if(rightIndex==leftIndex+1 || rightIndex==leftIndex){

return Math.max(arr[leftIndex],arr[rightIndex]);

}

int mid=(leftIndex+rightIndex)/2;

int leftMax=pidAndConquer(arr,leftIndex,mid);

int rightMax=pidAndConquer(arr,mid,rightIndex);

return Math.max(leftMax,rightMax);


二、貪心演算法


貪心演算法是指在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。


貪心演算法的基本思路是把問題分成若干個子問題,然後對每個子問題求解,得到子問題的局部最優解,最後再把子問題的最優解合並成原問題的一個解。這里要注意一點就是貪心演算法得到的不一定是全局最優解。這一缺陷導致了貪心演算法的適用范圍較少,更大的用途在於平衡演算法效率和最終結果應用,類似於:反正就走這么多步,肯定給你一個值,至於是不是最優的,那我就管不了了。就好像去菜市場買幾樣菜,可以經過反復比價之後再買,或者是看到有賣的不管三七二十一先買了,總之最終結果是菜能買回來,但搞不好多花了幾塊錢。


典型例子比如部分背包問題:有n個物體,第i個物體的重量為Wi,價值為Vi,在總重量不超過C的情況下讓總價值盡量高。每一個物體可以只取走一部分,價值和重量按比例計算。

貪心策略就是,每次都先拿性價比高的,判斷不超過C。


三、迭代演算法


迭代法也稱輾轉法,是一種不斷用變數的舊值遞推新值的過程。迭代演算法是用計算機解決問題的一種基本方法,它利用計算機運算速度快、適合做重復性操作的特點,讓計算機對一組指令(或一定步驟)進行重復執行,在每次執行這組指令(或這些步驟)時,都從變數的原值推出它的一個新值。最終得到問題的結果。


迭代演算法適用於那些每步輸入參數變數一定,前值可以作為下一步輸入參數的問題。


典型例子比如說,用迭代演算法計算斐波那契數列。


四、枚舉演算法


枚舉演算法是我們在日常中使用到的最多的一個演算法,它的核心思想就是:枚舉所有的可能。枚舉法的本質就是從所有候選答案中去搜索正確地解。

枚舉演算法適用於候選答案數量一定的情況。


典型例子包括雞錢問題,有公雞5,母雞3,三小雞1,求m錢n雞的所有可能解。可以採用一個三重循環將所有情況枚舉出來。代碼如下:



五、回溯演算法


回溯演算法是一個類似枚舉的搜索嘗試過程,主要是在搜索嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就「回溯」返回,嘗試別的路徑。

許多復雜的,規模較大的問題都可以使用回溯法,有「通用解題方法」的美稱。


典型例子是8皇後演算法。在8 8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問一共有多少種擺法。


回溯法是求解皇後問題最經典的方法。演算法的思想在於如果一個皇後選定了位置,那麼下一個皇後的位置便被限制住了,下一個皇後需要一直找直到找到安全位置,如果沒有找到,那麼便要回溯到上一個皇後,那麼上一個皇後的位置就要改變,這樣一直遞歸直到所有的情況都被舉出。


六、動態規劃演算法


動態規劃過程是:每次決策依賴於當前狀態,又隨即引起狀態的轉移。一個決策序列就是在變化的狀態中產生出來的,所以,這種多階段最優化決策解決問題的過程就稱為動態規劃。


動態規劃演算法適用於當某階段狀態給定以後,在這階段以後的過程的發展不受這段以前各段狀態的影響,即無後效性的問題。


典型例子比如說背包問題,給定背包容量及物品重量和價值,要求背包裝的物品價值最大。


Ⅳ 六種程序員實用演算法推薦~

程序員實用演算法

演算法一: 快速排序演算法

快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序n個項目要O(nlog n)次比較。在最壞狀況下則需要O(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他O(n log n) 演算法更快,因為它的內部循環 (inner loop)可以在大部分的架構上很有效率地被實現出來。快速排序使用分治法策略來把一個串列(list)分為兩個子串列(sub-lists)。

演算法二: 堆排序演算法

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為O(nlogn)。

演算法三: 歸並排序

歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide andConquer)的一個非常典型的應用。

演算法四: 二分查找演算法

二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束:如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。

如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為O(logn)。

演算法五: BFPRT(線性查找演算法)

BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該算 法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜度,五位演算法作者做了精妙的處理。

演算法六: BFS(廣度優先搜索)

廣度優先搜索演算法(Breadth-FirstSearch),是一種圖形搜索演算法。簡單的說BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。

Ⅳ 大學里程序員必須掌握的核心演算法

程序員必須掌握的核心演算法

十大排序演算法

簡單排序插入排序、

選擇排序、冒泡排序(必學)

分治排序:快速排序、歸並排序(必學,快速排序還要關注中軸的選取方式)

分配排序桶排序、基數排序

樹狀排序:堆排序(必學)

其他:計數排序(必學)、希爾排序

圖論演算法

圖的表示:鄰接矩陣和鄰接表

遍歷演算法:深度搜索和廣度搜索(必學)

最短路徑演算法:FLOYD,DIJKSTRA(必學)

最小生成樹演算法:PRIM,KRUSKAL(必學)

實際演算法:關鍵路徑、拓抖排序(原理與應用)

二分圖匹配:配對、匈牙利演算法(原理與應用)

拓展:中心性演算法、社區發現演算法(原理與應用)

搜索與回溯演算法

貪心演算法(必學)

信發式搜索演算法:A*尋路演算法(了解)

地圖著色演算法、N皇後問題、最優加工順序旅行商問題

動態規劃

樹形DP:01背包問題

線性DP:最長公共千序列、最長公共子串

區間DP:矩陣最大值(和以及積)

數位DP:數字游戲

狀態壓縮DP:旅行商

字元匹配演算法

正則表達式

模式匹配:KMP、BOYER-MOORE

流相關演算法

最大流:最短增廣路、DINIC演算法

最大流最小割:最大收盆問題、方格取數問題

最小費用最大流:最小費用路、消遣

Ⅵ 程序員必須掌握的核心演算法

程序員掌握核心演算法,還不收錄

1、十大排序演算法

(1)簡單排序:插入排序、選擇排序、冒泡排序(必學)。

(2)分治排序:快速排序、歸並排序(必學,快速排序還要關注中軸的選取方式)。

(3)分配排序:桶排序、基數排序。

(4)樹狀排序:堆排序(必學)。

(5)其他:計數排序(必學)、希爾排序。

對干十大演算法的學習,假如你不大懂的話,那麼推薦你去看書,因為看了書,你可能不僅僅知道這個演算法怎麼寫,還能知道他是怎麼來的。推薦書籍是《演算法第四版》,這本書講的很詳細,而且配了很多圖演示,還是挺好懂的。

2、搜索與回溯演算法

(1)貪心演算法(必學);

(2)啟發式搜索演算法:A*尋路演算法(了解);

(3)地圖著色演算法、N 皇後問題、最優加工順序;

(4)旅行商問題。

這方便的只是都是一些演算法相關的,像貪心演算法的思想,就必須學的了。建議通過刷題來學習,leetcode 直接專題刷。

3、動態規劃

(1)樹形DP:01背包問題;

(2)線性DP:最長公共子序列、最長公共子串;

(3)區間DP:矩陣最大值(和以及積);

(4)數位DP:數字游戲;

(5)狀態壓縮DP:旅行商。

這里建議先了解動態規劃是什麼,之後 leetcode專題刷,反正就一般上面這幾種題型。

4、字元匹配演算法

(1)正則表達式;

(2)模式匹配:KMP、Boyer-Moore。

5、流相關演算法

(1)最大流:最短增廣路、Dinic 演算法。

(2)最大流最小割:最大收益問題、方格取數問題。

(3)最小費用最大流:最小費用路、消遣。

閱讀全文

與程序員高級演算法相關的資料

熱點內容
為什麼蘋果ipad連接不上伺服器 瀏覽:927
可樂app怎麼用卡密 瀏覽:766
路由器如何打開dhcp伺服器地址 瀏覽:75
谷歌圖片怎麼搜索app 瀏覽:863
江蘇文件夾模具廠 瀏覽:464
安卓系統網線攔截怎麼關閉 瀏覽:31
伺服器和終端是什麼 瀏覽:516
換安卓蘋果照片怎麼弄回去 瀏覽:260
如何向ca中心申請伺服器 瀏覽:187
從java到Android 瀏覽:551
福建加密app哪個好用 瀏覽:382
opengl游戲編程徐明亮pdf 瀏覽:619
單片機row怎麼用 瀏覽:981
虛函數表與反編譯 瀏覽:134
網上的滴滴搶單app是怎麼做的 瀏覽:384
eve手游ios賬號怎麼登錄安卓的 瀏覽:622
linuxoracle12安裝教程 瀏覽:697
凱迪仕cpu動態加密 瀏覽:751
dell伺服器如何啟動 瀏覽:968
數字信號處理第三版pdf 瀏覽:684