『壹』 細思恐極丨 這尼瑪是「人工智慧「還是」人工智障「
人工智慧在現階段發展還不是很完美。
人工智慧在計算機上實現時有2種不同的方式。一種是採用傳統的編程技術,使系統呈現智能的效果,而不考慮所用方法是否與人或動物機體所用的方法相同。
這種方法叫工程學方法(ENGINEERING APPROACH),它已在一些領域內作出了成果,如文字識別、電腦下棋等。
另一種是模擬法(MODELING APPROACH),它不僅要看效果,還要求實現方法也和人類或生物機體所用的方法相同或相類似。遺傳演算法(GENERIC ALGORITHM,簡稱GA)和人工神經網路(ARTIFICIAL NEURAL NETWORK,簡稱ANN)均屬後一類型。遺傳演算法模擬人類或生物的遺傳-進化機制,人工神經網路則是模擬人類或動物大腦中神經細胞的活動方式。
『貳』 人工神經網路演算法研究及應用的目錄
第1章 緒論
1.1 神經網路在石油生產中的應用簡介
1.2 神經網路的研究與發展歷史
1.3 儲層預測的研究與進展
1.4 神經網路模式識別概述
1.5 遺傳演算法研究與發展概述
1.6 模擬退火演算法的研究和發展概況
1.7 支持向量機的研究與進展
1.8 本書的主要研究內容及章節安排
第2章 人工神經網路
2.1 引言
2.2 神經元模型
2.3 神經網路模型
2.4 感知器
2.5 誤差回傳神經網路(BP)
2.6 神經網路的優點
2.7 本章小結
第3章 改進遺傳演算法的徑向基函數網路方法研究及應用
3.1 引言
3.2 徑向基函數網路
3.3 遺傳演算法
3.4 自適應遺傳演算法(AGA)基本原理
3.5 基於改進遺傳演算法的徑向基函數網路
3.6 改進的遺傳演算法徑向基函數網路的應用
3.7 本章小結
第4章 小波變換及小波神經網路方法研究及應用
4.1 引言
4.2 小波分析
4.3 小波變換模極大檢測地震反射界面
4.4 小波神經網路
4.5 小波神經網路的應用一
4.6 本章小結
第5章 模糊神經網路方法研究及應用
5.1 引言
5.2 模糊理論
5.3 模糊關系和模糊邏輯推理
5.4 模糊邏輯系統
5.5 模糊系統和神經網路的融合
5.6 模糊神經網路
5.7 用於火山岩儲層識別預測的模糊神經網路
5.8 基於模糊神經網路的火山岩儲層的識別與預測
5.9 基於模糊神經網路多感測器數據融合的海底輸油管道腐蝕檢測系統
5.1 0本章小結
第6章 改進的模擬退火人工神經網路方法研究及應用
6.1 引言
6.2 模擬退火演算法及其特性
6.3 模擬退火演算法的漸近收斂性
6.4 模擬退火演算法與局部搜索演算法比較
6.5 鮑威爾(P0well)演算法
6.6 改進的模擬退火人工神經網路
6.7 改進的模擬退火人工神經網路應用
6.8 演算法比較
6.9 本章小結
第7章 支持向量機方法研究及應用
7.1 引言
7.2 機器學習的基本問題和方法
7.3 統計學習理論的主要內容
7.4 分類支持向量機
7.5 回歸支持向量機
7.6 支持向量機的應用
7.7 本章小結
第8章 結論
參考文獻
『叄』 神經網路和遺傳演算法有什麼關系
遺傳演算法是一種智能優化演算法,神經網路是人工智慧演算法的一種。
可以將遺傳演算法用於神經網路的參數優化中。
『肆』 如何利用人工神經網路或遺傳演算法解決實際問題
來自<神經網路之家>nnetinfo
目前可以做的一般有:
分類.
函數擬合
壓縮.
圖象識別
等等, 其實說到底,所有的都能歸於第2點--函數擬合.
一般如果輸入與輸出是有強烈關系的,網路都能找得到這個關系.例如病人的特徵作為輸入,判斷這個是否為病人,一般都是可以的.業務背景知識強,才能把神經網路運用到實際中.
另外,還需要把實現問題轉換為數學問題的能力.
例如數字識別就是一個經典的應用.但直接把圖片放進去訓練是得不到識別效果的,因為維度太多了,而且信息冗餘量很大.
於是有人把圖片的特徵先自已提取出來:例如對角線與圖片上的數字有幾個交點等等,再把這些特徵作為輸入,數字類別向量作為輸出,放到網路中訓練.最後你再寫一個數字,提取這個數字的特徵,再把這特徵放進網路中的時候,它就能識別到你是哪個數字了.
另外,又有人用卷積神經網路去做數字識別.
還有人用深度網路去做,即先把原來圖片的信息用RBM網路進行壓縮,然後再訓練,效果就好了.
等等,其實很多問題都可以做,但前提是你要想到好的方式去運用神經網路.
『伍』 什麼是蟻群演算法,神經網路演算法,遺傳演算法
蟻群演算法又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
神經網路
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。目前,主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機饃擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
遺傳演算法,是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法,它最初由美國Michigan大學J.Holland教授於1975年首先提出來的,並出版了頗有影響的專著《Adaptation in Natural and Artificial Systems》,GA這個名稱才逐漸為人所知,J.Holland教授所提出的GA通常為簡單遺傳演算法(SGA)。
『陸』 BP演算法、BP神經網路、遺傳演算法、神經網路這四者之間的關系
這四個都屬於人工智慧演算法的范疇。其中BP演算法、BP神經網路和神經網路
屬於神經網路這個大類。遺傳演算法為進化演算法這個大類。
神經網路模擬人類大腦神經計算過程,可以實現高度非線性的預測和計算,主要用於非線性擬合,識別,特點是需要「訓練」,給一些輸入,告訴他正確的輸出。若干次後,再給新的輸入,神經網路就能正確的預測對於的輸出。神經網路廣泛的運用在模式識別,故障診斷中。BP演算法和BP神經網路是神經網路的改進版,修正了一些神經網路的缺點。
遺傳演算法屬於進化演算法,模擬大自然生物進化的過程:優勝略汰。個體不斷進化,只有高質量的個體(目標函數最小(大))才能進入下一代的繁殖。如此往復,最終找到全局最優值。遺傳演算法能夠很好的解決常規優化演算法無法解決的高度非線性優化問題,廣泛應用在各行各業中。差分進化,蟻群演算法,粒子群演算法等都屬於進化演算法,只是模擬的生物群體對象不一樣而已。
『柒』 人工神經網路和遺傳演算法的異同
神經網路是根據實際輸出和期望輸出的差值來調整權重,最終使輸出接近期望輸出。
遺傳演算法是根據假設不停地進化,最終使假設變成真實值。
他們都是可以達到最終的決策目的。
『捌』 神經網路優缺點,
優點:
(1)具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。
自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。
(2)具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
(3)具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
缺點:
(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。
(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網路就無法進行工作。
(3)把一切問題的特徵都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。
(4)理論和學習演算法還有待於進一步完善和提高。
(8)人工神經網路遺傳演算法擴展閱讀:
神經網路發展趨勢
人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。
人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。
將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。
神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。
由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。
參考資料:網路-人工神經網路
『玖』 關於神經網路,蟻群演算法和遺傳演算法
神經網路並行性和自適應性很強,應用領域很廣,在任何非線性問題中都可以應用,如控制、信息、預測等各領域都能應用。
蟻群演算法最開始應用於TSP問題,獲得了成功,後來又廣泛應用於各類組合優化問題。但是該演算法理論基礎較薄弱,演算法收斂性都沒有得到證明,很多參數的設定也僅靠經驗,實際效果也一般,使用中也常常早熟。
遺傳演算法是比較成熟的演算法,它的全局尋優能力很強,能夠很快地趨近較優解。主要應用於解決組合優化的NP問題。
這三種演算法可以相互融合,例如GA可以優化神經網路初始權值,防止神經網路訓練陷入局部極小且加快收斂速度。蟻群演算法也可用於訓練神經網路,但一定要使用優化後的蟻群演算法,如最大-最小蟻群演算法和帶精英策略。