導航:首頁 > 源碼編譯 > 前向演算法的復雜度是

前向演算法的復雜度是

發布時間:2022-04-17 13:27:34

1. 演算法的復雜性分析包括哪些內容

在演算法的復雜性表示中,O記號表示復雜度的上限。
即:O(g(n)) =
單向鏈表沒有指向前節點的指針,必須從頭指針開始遍歷到p的前節點,最壞的情況為p指向的是鏈表的尾節點,應此為O(n)。

2. 演算法的時間復雜度什麼意思

演算法的時間復雜度通俗的講就是執行演算法所需要的時間(執行多少次賦值、比較、判斷等操作)
為了方便比較,演算法的時間復雜度計算的通常的做法是,從演算法選取一種對於所研究的問題(或演算法模型)來說是基本運算的操作,以其重復執行的次數作為評價演算法時間。該基本操作多數情況下是由演算法最深層環內的語句表示的,基本操作的執行次數實際上就是相應語句的執行次數。

再給你舉個簡單的例子吧:
for(int i = 0; i < n;++i)
;
這個循環執行n次 所以時間復雜度是O(n)

for(int i = 0; i< n;++i)
{
for(int j = 0; j< n;++j)
;
}
這嵌套的兩個循環 而且都執行n次
那麼它的時間復雜度就是 O(n^2)

時間復雜度只能大概的表示所用的時間
而一些基本步驟所運行的時間不同,但是由於很難精確無法計算,所以省略
如:
for(int i = 0;i < n;++i)
a = b;

for(int i = 0;i < n;++i)
;
這個運行的時間當然是第二個快,但是他們的時間復雜度都是 O(n) ,
由於a=b運算時間可以忽略不計,所以判斷時間復雜度主要看循環的復雜度

3. 演算法時間復雜度怎麼算

一、概念
時間復雜度是總運算次數表達式中受n的變化影響最大的那一項(不含系數)
比如:一般總運算次數表達式類似於這樣:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0時,時間復雜度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此類推
eg:
(1) for(i=1;i<=n;i++) //循環了n*n次,當然是O(n^2)
for(j=1;j<=n;j++)
s++;
(2) for(i=1;i<=n;i++)//循環了(n+n-1+n-2+...+1)≈(n^2)/2,因為時間復雜度是不考慮系數的,所以也是O(n^2)
for(j=i;j<=n;j++)
s++;
(3) for(i=1;i<=n;i++)//循環了(1+2+3+...+n)≈(n^2)/2,當然也是O(n^2)
for(j=1;j<=i;j++)
s++;
(4) i=1;k=0;
while(i<=n-1){
k+=10*i; i++; }//循環了n-1≈n次,所以是O(n)(5) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
//循環了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(這個公式要記住哦)≈(n^3)/3,不考慮系數,自然是O(n^3)
另外,在時間復雜度中,log(2,n)(以2為底)與lg(n)(以10為底)是等價的,因為對數換底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系數,二者當然是等價的
二、計算方法1.一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。
一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
2.一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))。隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))。
3.常見的時間復雜度
按數量級遞增排列,常見的時間復雜度有:
常數階O(1), 對數階O(log2n), 線性階O(n), 線性對數階O(nlog2n), 平方階O(n^2), 立方階O(n^3),..., k次方階O(n^k), 指數階O(2^n) 。
其中,1.O(n),O(n^2), 立方階O(n^3),..., k次方階O(n^k) 為多項式階時間復雜度,分別稱為一階時間復雜度,二階時間復雜度。。。。2.O(2^n),指數階時間復雜度,該種不實用3.對數階O(log2n), 線性對數階O(nlog2n),除了常數階以外,該種效率最高
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n^2
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n^3
}
}
則有 T(n)= n^2+n^3,根據上面括弧里的同數量級,我們可以確定 n^3為T(n)的同數量級
則有f(n)= n^3,然後根據T(n)/f(n)求極限可得到常數c
則該演算法的 時間復雜度:T(n)=O(n^3)
四、

定義:如果一個問題的規模是n,解這一問題的某一演算法所需要的時間為T(n),它是n的某一函數
T(n)稱為這一演算法的「時間復雜性」。

當輸入量n逐漸加大時,時間復雜性的極限情形稱為演算法的「漸近時間復雜性」。

我們常用大O表示法表示時間復雜性,注意它是某一個演算法的時間復雜性。大O表示只是說有上界,由定義如果f(n)=O(n),那顯然成立f(n)=O(n^2),它給你一個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。

此外,一個問題本身也有它的復雜性,如果某個演算法的復雜性到達了這個問題復雜性的下界,那就稱這樣的演算法是最佳演算法。

「大O記法」:在這種描述中使用的基本參數是
n,即問題實例的規模,把復雜性或運行時間表達為n的函數。這里的「O」表示量級 (order),比如說「二分檢索是 O(logn)的」,也就是說它需要「通過logn量級的步驟去檢索一個規模為n的數組」記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比於 f(n)的速度增長。

這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,一個低附加代價的O(n2)演算法在n較小的情況下可能比一個高附加代價的 O(nlogn)演算法運行得更快。當然,隨著n足夠大以後,具有較慢上升函數的演算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;

以上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。演算法的時間復雜度為常數階,記作T(n)=O(1)。如果演算法的執行時間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是一個較大的常數。此類演算法的時間復雜度是O(1)。

O(n^2)

2.1.
交換i和j的內容
sum=0;(一次)
for(i=1;i<=n;i++)(n次 )
for(j=1;j<=n;j++)
(n^2次 )
sum++;(n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.
for (i=1;i<n;i++)
{
y=y+1;①
for
(j=0;j<=(2*n);j++)
x++;②
}
解:
語句1的頻度是n-1
語句2的頻度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
該程序的時間復雜度T(n)=O(n^2).

O(n)

2.3.
a=0;
b=1;①
for
(i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解:語句1的頻度:2,
語句2的頻度:
n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n
)

2.4.
i=1;①
while (i<=n)
i=i*2; ②
解: 語句1的頻度是1,
設語句2的頻度是f(n),則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)=
log2n,
T(n)=O(log2n )

O(n^3)

2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:當i=m,
j=k的時候,內層循環的次數為k當i=m時, j 可以取 0,1,...,m-1 , 所以這里最內循環共進行了0+1+...+m-1=(m-1)m/2次所以,i從0取到n, 則循環共進行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以時間復雜度為O(n^3).


我們還應該區分演算法的最壞情況的行為和期望行為。如快速排序的最
壞情況運行時間是 O(n^2),但期望時間是 O(nlogn)。通過每次都仔細 地選擇基準值,我們有可能把平方情況 (即O(n^2)情況)的概率減小到幾乎等於 0。在實際中,精心實現的快速排序一般都能以 (O(nlogn)時間運行。
下面是一些常用的記法:


訪問數組中的元素是常數時間操作,或說O(1)操作。一個演算法如 果能在每個步驟去掉一半數據元素,如二分檢索,通常它就取 O(logn)時間。用strcmp比較兩個具有n個字元的串需要O(n)時間。常規的矩陣乘演算法是O(n^3),因為算出每個元素都需要將n對
元素相乘並加到一起,所有元素的個數是n^2。
指數時間演算法通常來源於需要求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的演算法將是O(2n)的。指數演算法一般說來是太復雜了,除非n的值非常小,因為,在 這個問題中增加一個元素就導致運行時間加倍。不幸的是,確實有許多問題 (如著名的「巡迴售貨員問題」 ),到目前為止找到的演算法都是指數的。如果我們真的遇到這種情況,通常應該用尋找近似最佳結果的演算法替代之。

4. 語音識別文件的聲學模型

語音識別系統的模型通常由聲學模型和語言模型兩部分組成,分別對應於語音到音節概率的計算和音節到字概率的計算。本節和下一節分別介紹聲學模型和語言模型方面的技術。
HMM聲學建模:馬爾可夫模型的概念是一個離散時域有限狀態自動機,隱馬爾可夫模型HMM是指這一馬爾可夫模型的內部狀態外界不可見,外界只能看到各個時刻的輸出值。對語音識別系統,輸出值通常就是從各個幀計算而得的聲學特徵。用HMM刻畫語音信號需作出兩個假設,一是內部狀態的轉移只與上一狀態有關,另一是輸出值只與當前狀態(或當前的狀態轉移)有關,這兩個假設大大降低了模型的復雜度。HMM的打分、解碼和訓練相應的演算法是前向演算法、Viterbi演算法和前向後向演算法。
語音識別中使用HMM通常是用從左向右單向、帶自環、帶跨越的拓撲結構來對識別基元建模,一個音素就是一個三至五狀態的HMM,一個詞就是構成詞的多個音素的HMM串列起來構成的HMM,而連續語音識別的整個模型就是詞和靜音組合起來的HMM。上下文相關建模:協同發音,指的是一個音受前後相鄰音的影響而發生變化,從發聲機理上看就是人的發聲器官在一個音轉向另一個音時其特性只能漸變,從而使得後一個音的頻譜與其他條件下的頻譜產生差異。上下文相關建模方法在建模時考慮了這一影響,從而使模型能更准確地描述語音,只考慮前一音的影響的稱為Bi- Phone,考慮前一音和後一音的影響的稱為Tri-Phone。
英語的上下文相關建模通常以音素為基元,由於有些音素對其後音素的影響是相似的,因而可以通過音素解碼狀態的聚類進行模型參數的共享。聚類的結果稱為senone。決策樹用來實現高效的triphone對senone的對應,通過回答一系列前後音所屬類別(元/輔音、清/濁音等等)的問題,最終確定其HMM狀態應使用哪個senone。分類回歸樹CART模型用以進行詞到音素的發音標注。

5. 演算法復雜度中的O(n)、O(nlgn)、O(n^2)等是什麼意思

關於演算法的復雜度計算,初學者一開始便容易進入完全定量的思考之中,這是難以到達的。演算法復雜度在很多時候是對演算法運行的時間一個大概的定性(或者說大數)描述,因為很多時候無法精確地描述一條代碼究竟執行了多少時間。而任何一個演算法運行的大多時間都集中在某一主體循環之中,像for,while之類,主體循環的次數往往跟某個或多個輸入參數或環境變數有關。像O(n)、O(nlgn)、O(n^2)之類描述都是圍繞主體循環次數和輸入參數或者環境變數的關系展開的。
下面舉一個例子,從給定的整型數組中查找與某一數相等的數的位置,顯然對於沒有排序的數組而言,需要從數組頭部開始向後遍歷比較,那麼這個主體遍歷循環就跟數組的長度有關,即演算法復雜度為O(n)。

6. 聲學模型的介紹

聲學模型是語音識別系統中最為重要的部分之一,目前的主流系統多採用隱馬爾科夫模型進行建模。 隱馬爾可夫模型的概念是一個離散時域有限狀態自動機,隱馬爾可夫模型HMM是指這一馬爾可夫模型的內部狀態外界不可見,外界只能看到各個時刻的輸出值。對語音識別系統,輸出值通常就是從各個幀計算而得的聲學特徵。用HMM刻畫語音信號需作出兩個假設,一是內部狀態的轉移只與上一狀態有關,另一是輸出值只與當前狀態(或當前的狀態轉移)有關,這兩個假設大大降低了模型的復雜度。HMM的打分、解碼和訓練相應的演算法是前向演算法、Viterbi演算法和前向後向演算法。

7. 有關演算法的時間復雜度

復雜度就是函數的最高次項,因為函數值主要就是由最高次項決定的,隨著自變數的增大,低次項的影響將越來越小,最後趨於零。例如:Y = n^2 + n,當n=1 時 Y=2,N^2 和 N各佔50%,n=10時 Y = 110,N^2 和 N各占 10/11,1/11,n=100時Y=100100,n^2和n各占 1000/1001,1/1001,以此類推,n所佔的比率將會趨於零,n^2所佔的比率趨於100%。
100N3 O(n3)
6n2 - 12n+1 O(n2)
1024 O(1) 常數表示執行時間與數據量無關
n+2log2n O(n)
n(n+1)(n+2)/6 O(n3)
2n+1+100n O(n)

8. 快速排序的復雜度怎麼算,是多少

這個,我確實一點也不懂,幫你搜索。

1.
快速排序-時空復雜度:
快速排序每次將待排序數組分為兩個部分,在理想狀況下,每一次都將待排序數組劃分成等長兩個部分,則需要logn次劃分。
而在最壞情況下,即數組已經有序或大致有序的情況下,每次劃分只能減少一個元素,快速排序將不幸退化為冒泡排序,所以快速排序時間復雜度下界為O(nlogn),最壞情況為O(n^2)。在實際應用中,快速排序的平均時間復雜度為O(nlogn)。
快速排序在對序列的操作過程中只需花費常數級的空間。空間復雜度S(1)。
但需要注意遞歸棧上需要花費最少logn最多n的空間。

2.快速排序-隨機化演算法:
快速排序的實現需要消耗遞歸棧的空間,而大多數情況下都會通過使用系統遞歸棧來完成遞歸求解。在元素數量較大時,對系統棧的頻繁存取會影響到排序的效率。
一種常見的辦法是設置一個閾值,在每次遞歸求解中,如果元素總數不足這個閾值,則放棄快速排序,調用一個簡單的排序過程完成該子序列的排序。這樣的方法減少了對系統遞歸棧的頻繁存取,節省了時間的消費。
一般的經驗表明,閾值取一個較小的值,排序演算法採用選擇、插入等緊湊、簡潔的排序。一個可以參考的具體方案:閾值T=10,排序演算法用選擇排序。
閾值不要太大,否則省下的存取系統棧的時間,將會被簡單排序演算法較多的時間花費所抵消。
另一個可以參考的方法,是自行建棧模擬遞歸過程。但實際經驗表明,收效明顯不如設置閾值。

3.快速排序的最壞情況基於每次劃分對主元的選擇。基本的快速排序選取第一個元素作為主元。這樣在數組已經有序的情況下,每次劃分將得到最壞的結果。一種比較常見的優化方法是隨機化演算法,即隨機選取一個元素作為主元。這種情況下雖然最壞情況仍然是O(n^2),但最壞情況不再依賴於輸入數據,而是由於隨機函數取值不佳。實際上,隨機化快速排序得到理論最壞情況的可能性僅為1/(2^n)。所以隨機化快速排序可以對於絕大多數輸入數據達到O(nlogn)的期望時間復雜度。一位前輩做出了一個精闢的總結:「隨機化快速排序可以滿足一個人一輩子的人品需求。」
隨機化快速排序的唯一缺點在於,一旦輸入數據中有很多的相同數據,隨機化的效果將直接減弱。對於極限情況,即對於n個相同的數排序,隨機化快速排序的時間復雜度將毫無疑問的降低到O(n^2)。解決方法是用一種方法進行掃描,使沒有交換的情況下主元保留在原位置。

4.設要排序的數組是A[0]……A[N-1],首先任意選取一個數據(通常選用第一個數據)作為關鍵數據,然後將所有比它小的數都放到它前面,所有比它大的數都放到它後面,這個過程稱為一趟快速排序。一趟快速排序的演算法是:
1)設置兩個變數I、J,排序開始的時候:I=0,J=N-1;
2)以第一個數組元素作為關鍵數據,賦值給key,即 key=A[0];
3)從J開始向前搜索,即由後開始向前搜索(J=J-1),找到第一個小於key的值A[J],並與A[I]交換;
4)從I開始向後搜索,即由前開始向後搜索(I=I+1),找到第一個大於key的A[I],與A[J]交換;
5)重復第3、4、5步,直到 I=J; (3,4步是在程序中沒找到時候j=j-1,i=i+1。找到並交換的時候i, j指針位置不變。另外當i=j這過程一定正好是i+或j+完成的最後另循環結束)
例如:待排序的數組A的值分別是:(初始關鍵數據:X=49) 注意關鍵X永遠不變,永遠是和X進行比較,無論在什麼位子,最後的目的就是把X放在中間,小的放前面大的放後面。
A[0] 、 A[1]、 A[2]、 A[3]、 A[4]、 A[5]、 A[6]:
49 38 65 97 76 13 27
進行第一次交換後: 27 38 65 97 76 13 49
( 按照演算法的第三步從後面開始找)
進行第二次交換後: 27 38 49 97 76 13 65
( 按照演算法的第四步從前面開始找>X的值,65>49,兩者交換,此時:I=3 )
進行第三次交換後: 27 38 13 97 76 49 65
( 按照演算法的第五步將又一次執行演算法的第三步從後開始找
進行第四次交換後: 27 38 13 49 76 97 65
( 按照演算法的第四步從前面開始找大於X的值,97>49,兩者交換,此時:I=4,J=6 )
此時再執行第三步的時候就發現I=J,從而結束一趟快速排序,那麼經過一趟快速排序之後的結果是:27 38 13 49 76 97 65,即所以大於49的數全部在49的後面,所以小於49的數全部在49的前面。
快速排序就是遞歸調用此過程——在以49為中點分割這個數據序列,分別對前面一部分和後面一部分進行類似的快速排序,從而完成全部數據序列的快速排序,最

9. 數據結構與演算法 演算法的時間復雜度是怎麼求的

就是求一個多項式,比如for(i=0;i<n;i++);
這里做的次數是n次,那麼這個復雜度就是O(n)
for(i=0;i<n;i++)for(j=i+1;j<n;j++);
這里做的次數是(n+1)*n/2
最高階是n^2所以復雜度是O(n^2)

10. 排序演算法的復雜度

由於程序比較簡單,所以沒有加什麼注釋。所有的程序都給出了完整的運行代碼,並在我的VC環境
下運行通過。因為沒有涉及MFC和WINDOWS的內容,所以在BORLAND C++的平台上應該也不會有什麼
問題的。在代碼的後面給出了運行過程示意,希望對理解有幫助。 這是最原始,也是眾所周知的最慢的演算法了。他的名字的由來因為它的工作看來象是冒泡: #include<iostream>usingnamespacestd;voidBubbleSort(int*pData,intCount){intiTemp;for(inti=0;i<Count;i++){for(intj=Count-1;j>i;j--){if(pData[j]<pData[j-1]){iTemp=pData[j-1];pData[j-1]=pData[j];pData[j]=iTemp;}}}}voidmain(){intdata[7]={10,9,8,7,6,5,4};BubbleSort(data,7);for(inti=0;i<7;i++){cout<<data[i]<<;}cout<<endl;system(PAUSE);}倒序(最糟情況)
第一輪:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,10,8,9->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交換2次)
第二輪:7,8,10,9->7,8,9,10->7,8,10,9(交換1次)
(這是原撰寫人的--7,8,10,9->7,8,10,9->7,8,10,9(交換0次),第二輪應該是這樣的)
第三輪:7,8,9,10->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
上面我們給出了程序段,現在我們分析它:這里,影響我們演算法性能的主要部分是循環和交換,
顯然,次數越多,性能就越差。從上面的程序我們可以看出循環的次數是固定的,為1+2+...+n-1。
寫成公式就是1/2*(n-1)*n。
現在注意,我們給出O方法的定義:
若存在一常量K和起點n0,使當n>=n0時,有f(n)<=K*g(n),則f(n) = O(g(n))。(呵呵,不要說沒學好數學呀,對於編程數學是非常重要的!!!)
現在我們來看1/2*(n-1)*n,當K=1/2,n0=1,g(n)=n*n時,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我們程序循環的復雜度為O(n*n)。
再看交換。從程序後面所跟的表可以看到,兩種情況的循環相同,交換不同。其實交換本身同數據源的
有序程度有極大的關系,當數據處於倒序的情況時,交換次數同循環一樣(每次循環判斷都會交換),
復雜度為O(n*n)。當數據為正序,將不會有交換。復雜度為O(0)。亂序時處於中間狀態。正是由於這樣的
原因,我們通常都是通過循環次數來對比演算法。 交換法的程序最清晰簡單,每次用當前的元素一一的同其後的元素比較並交換。 #include<iostream.h>voidExchangeSort(int*pData,intCount){intiTemp;for(inti=0;i<Count-1;i++){//共(count-1)輪,每輪得到一個最小值for(intj=i+1;j<Count;j++){//每次從剩下的數字中尋找最小值,於當前最小值相比,如果小則交換if(pData[j]<pData[i]){iTemp=pData[i];pData[i]=pData[j];pData[j]=iTemp;}}}}voidmain(){intdata[]={10,9,8,7,6,5,4};ExchangeSort(data,sizeof(data)/sizeof(int));for(inti=0;i<sizeof(data)/sizeof(int);i++){cout<<data[i]<<;}cout<<endl;system(PAUSE);}第一輪: 9,10,8,7->8,10,9,7->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,9,10,8->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交換1次)
第二輪:7,10,8,9->7,8,10,9->7,8,10,9(交換1次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
從運行的表格來看,交換幾乎和冒泡一樣糟。事實確實如此。循環次數和冒泡一樣
也是1/2*(n-1)*n,所以演算法的復雜度仍然是O(n*n)。由於我們無法給出所有的情況,所以
只能直接告訴大家他們在交換上面也是一樣的糟糕(在某些情況下稍好,在某些情況下稍差)。 現在我們終於可以看到一點希望:選擇法,這種方法提高了一點性能(某些情況下)
這種方法類似我們人為的排序習慣:從數據中選擇最小的同第一個值交換,在從剩下的部分中
選擇最小的與第二個交換,這樣往復下去。 #include<iostream.h>voidSelectSort(int*pData,intCount){intiTemp;intiPos;for(inti=0;i<Count-1;i++){iTemp=pData[i];iPos=i;for(intj=i+1;j<Count;j++){if(pData[j]<iTemp){iTemp=pData[j];iPos=j;}}pData[iPos]=pData[i];pData[i]=iTemp;}}voidmain(){intdata[]={10,9,8,7,6,5,4};SelectSort(data,7);for(inti=0;i<7;i++)cout<<data[i]<<;cout<< ;}倒序(最糟情況)
第一輪:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交換1次)
第二輪:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交換1次)
第一輪:7,8,9,10->(iTemp=9)7,8,9,10(交換0次)
循環次數:6次
交換次數:2次
其他:
第一輪:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交換1次)
第二輪:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交換1次)
第一輪:7,8,10,9->(iTemp=9)7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
遺憾的是演算法需要的循環次數依然是1/2*(n-1)*n。所以演算法復雜度為O(n*n)。
我們來看他的交換。由於每次外層循環只產生一次交換(只有一個最小值)。所以f(n)<=n
所以我們有f(n)=O(n)。所以,在數據較亂的時候,可以減少一定的交換次數。 插入法較為復雜,它的基本工作原理是抽出牌,在前面的牌中尋找相應的位置插入,然後繼續下一張 #include<iostream.h>voidInsertSort(int*pData,intCount){intiTemp;intiPos;for(inti=1;i<Count;i++){iTemp=pData[i];//保存要插入的數iPos=i-1;//被插入的數組數字個數while((iPos>=0)&&(iTemp<pData[iPos])){//從最後一個(最大數字)開始對比,大於它的數字往後移位pData[iPos+1]=pData[iPos];iPos--;}pData[iPos+1]=iTemp;//插入數字的位置}}voidmain(){intdata[]={10,9,8,7,6,5,4};InsertSort(data,7);for(inti=0;i<7;i++)cout<<data<<;cout<< ;}其他:
第一輪:8,10,7,9->8,10,7,9(交換0次)(循環1次)
第二輪:9,10,8,7->8,9,10,7(交換1次)(循環2次)
第一輪:8,9,10,7->7,8,9,10(交換1次)(循環3次)
循環次數:6次
交換次數:3次
其他:
第一輪:8,10,7,9->8,10,7,9(交換0次)(循環1次)
第二輪:8,10,7,9->7,8,10,9(交換1次)(循環2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)(循環1次)
循環次數:4次
交換次數:2次
上面結尾的行為分析事實上造成了一種假象,讓我們認為這種演算法是簡單演算法中最好的,其實不是,
因為其循環次數雖然並不固定,我們仍可以使用O方法。從上面的結果可以看出,循環的次數f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其復雜度仍為O(n*n)(這里說明一下,其實如果不是為了展示這些簡單
排序的不同,交換次數仍然可以這樣推導)。現在看交換,從外觀上看,交換次數是O(n)(推導類似
選擇法),但我們每次要進行與內層循環相同次數的『=』操作。正常的一次交換我們需要三次『=』
而這里顯然多了一些,所以我們浪費了時間。
最終,我個人認為,在簡單排序演算法中,選擇法是最好的。 高級排序演算法中我們將只介紹這一種,同時也是目前我所知道(我看過的資料中)的最快的。
它的工作看起來仍然象一個二叉樹。首先我們選擇一個中間值middle程序中我們使用數組中間值,然後
把比它小的放在左邊,大的放在右邊(具體的實現是從兩邊找,找到一對後交換)。然後對兩邊分別使
用這個過程(最容易的方法——遞歸)。
1.快速排序://這段代碼編譯可以通過,一運行就出錯,內部的細節有些問題,我還沒找到解決方法。 #include<iostream.h>voidrun(int*pData,intleft,intright){inti,j;intmiddle,iTemp;i=left;j=right;middle=pData[left];do{while((pData[i]<middle)&&(i<right))//從左掃描大於中值的數i++;while((pData[j]>middle)&&(j>left))//從右掃描大於中值的數j--;if(i<=j)//找到了一對值{//交換iTemp=pData[i];pData[i]=pData[j];pData[j]=iTemp;i++;j--;}}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)//當左邊部分有值(left<j),遞歸左半邊if(left<j)run(pData,left,j);//當右邊部分有值(right>i),遞歸右半邊if(right>i)run(pData,i,right);}voidQuickSort(int*pData,intCount){run(pData,0,Count-1);}voidmain(){intdata[]={10,9,8,7,6,5,4};QuickSort(data,7);for(inti=0;i<7;i++)cout<<data[i]<<;//原作者此處代碼有誤,輸出因為date[i],date數組名輸出的是地址cout<< ;}這里我沒有給出行為的分析,因為這個很簡單,我們直接來分析演算法:首先我們考慮最理想的情況
1.數組的大小是2的冪,這樣分下去始終可以被2整除。假設為2的k次方,即k=log2(n)。
2.每次我們選擇的值剛好是中間值,這樣,數組才可以被等分。
第一層遞歸,循環n次,第二層循環2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以演算法復雜度為O(log2(n)*n)
其他的情況只會比這種情況差,最差的情況是每次選擇到的middle都是最小值或最大值,那麼他將變
成交換法(由於使用了遞歸,情況更糟)。但是你認為這種情況發生的幾率有多大??呵呵,你完全
不必擔心這個問題。實踐證明,大多數的情況,快速排序總是最好的。
如果你擔心這個問題,你可以使用堆排序,這是一種不穩定的O(log2(n)*n)演算法,但是通常情況下速度要慢
於快速排序(因為要重組堆)。 雙向冒泡
通常的冒泡是單向的,而這里是雙向的,也就是說還要進行反向的工作。 #include<iostream.h>inlinevoidexchange(int*a,int*b){inttemp;temp=*a;*a=*b;*b=temp;}voidbubblesort(int*array,intnum){inti,j,k,flag=0;for(i=0;i<num;i++){printf(%d,array[i]);}printf( );for(i=0;i<num;i++){//所有數的個數為num個flag=0;for(j=i;j<num-i-1;j++){//每循環一次最底端的數的順序都會排好,所以初始時j=i;if(array[j]>array[j+1]){exchange(&array[j],&array[j+1]);flag=1;}}for(k=num-1-i-1;k>i;k--){//每循環一次最頂端的數據的順序也會排好,所以初始時k=num-i-2if(array[k]<array[k-1]){exchange(&array[k],&array[k-1]);flag=1;}}if(flag==0){//如果flag未發生改變則說明未發生數據交換,則排序完成return;}}}voidmain(){intdata[]={10,9,8,7,6,5,4,3,2,1,-10,-1};bubblesort(data,12);for(inti=0;i<12;i++)cout<<data<<;cout<< ;} 這個程序我想就沒有分析的必要了,大家看一下就可以了。不明白可以在論壇上問。
MyData.h文件
///////////////////////////////////////////////////////
class CMyData
{
public:
CMyData(int Index,char* strData);
CMyData();
virtual ~CMyData();
int m_iIndex;
int GetDataSize(){ return m_iDataSize; };
const char* GetData(){ return m_strDatamember; };
//這里重載了操作符:
CMyData& operator =(CMyData &SrcData);
bool operator <(CMyData& data );
bool operator >(CMyData& data );
private:
char* m_strDatamember;
int m_iDataSize;
};
////////////////////////////////////////////////////////
MyData.cpp文件
////////////////////////////////////////////////////////
CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}
CMyData::~CMyData()
{
if(m_strDatamember != NULL)
delete[] m_strDatamember;
m_strDatamember = NULL;
}
CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
m_iDataSize = strlen(strData);
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,strData);
}
CMyData& CMyData::operator =(CMyData &SrcData)
{
m_iIndex = SrcData.m_iIndex;
m_iDataSize = SrcData.GetDataSize();
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,SrcData.GetData());
return *this;
}
bool CMyData::operator <(CMyData& data )
{
return m_iIndex<data.m_iIndex;
}
bool CMyData::operator >(CMyData& data )
{
return m_iIndex>data.m_iIndex;
}
///////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
//主程序部分
#include <iostream.h>
#include MyData.h
template <class T>
void run(T* pData,int left,int right)
{
int i,j;
T middle,iTemp;
i = left;
j = right;
//下面的比較都調用我們重載的操作符函數
middle = pData[(left+right)/2]; //求中間值
do{
while((pData<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData;
pData = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞歸左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞歸右半邊
if(right>i)
run(pData,i,right);
}
template <class T>
void QuickSort(T* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
CMyData data[] = {
CMyData(8,xulion),
CMyData(7,sanzoo),
CMyData(6,wangjun),
CMyData(5,VCKBASE),
CMyData(4,jacky2000),
CMyData(3,cwally),
CMyData(2,VCUSER),
CMyData(1,isdong)
};
QuickSort(data,8);
for (int i=0;i<8;i++)
cout<<data.m_iIndex<< <<data.GetData()<< ;
cout<< ;

閱讀全文

與前向演算法的復雜度是相關的資料

熱點內容
河北廊坊電信dns伺服器地址 瀏覽:845
老股民指標源碼 瀏覽:28
偉福顯示未安裝編譯器什麼意思呢 瀏覽:232
拉伸命令cad 瀏覽:489
yy安卓怎麼搶麥 瀏覽:932
阿里雲共享型伺服器價格 瀏覽:442
壓縮機效率低 瀏覽:54
python讀取excel製作直方圖 瀏覽:485
這周遊源碼 瀏覽:179
安卓手機圖標怎麼變成一樣的 瀏覽:358
pythongui選擇文件 瀏覽:481
預付APP哪個部門管理 瀏覽:612
程序員入門英語聽力 瀏覽:128
伺服器網站被大量不明地址訪問 瀏覽:376
軟體分享網站源碼 瀏覽:611
rn是什麼文件夾 瀏覽:988
鋼筋核心區域加密 瀏覽:279
nginxphp慢 瀏覽:293
伺服器系統如何寫入u盤 瀏覽:13
cs社區伺服器怎麼改中文 瀏覽:26