㈠ 高中數學必修3程序框圖知識點
高中數學必修3中的程序框圖一直以來是考試中經常考查的一個內容。那麼哪些知識點需要我們掌握?下面我給高中生帶來數學必修3程序框圖知識點,希望對你有幫助。
高中數學必修3程序框圖知識點
程序框圖的概念:
程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示演算法的圖形;
程序框圖的構成:
一個程序框圖包括以下幾部分:實現不同演算法功能的相對應的程序框;帶箭頭的流程線;程序框內必要的 說明文 字。
設計程序框圖的步驟:
第一步,用自然語言表述演算法步驟;
第二步,確定每一個演算法步驟所包含的邏輯結構,並用相應的程序框圖表示,得到該步驟的程序框圖;
第三步,將所有步驟的程序框圖用流程線連接起來,並加上終端框,得到表示整個演算法的程序框圖。
畫程序框圖的規則:
(1)使用標準的框圖符號;
(2)框圖一般按從上到下、從左到右的方向畫;
(3)除判斷框外,大多數程序框圖中的程序框只有一個進入點和一個退出點,判斷框是具有超過一個退出點的唯一符號;
(4)在圖形符號內描述的語言要非常簡練清楚。
幾種重要的結構:
順序結構、條件結構、循環結構。
高中數學必修3語句知識點
輸入語句:
在該程序中的第1行中的INPUT語句就是輸入語句。這個語句的一般格式是:
其中,“提示內容”一般是提示用戶輸入什麼樣的信息。如每次運行上述程序時,依次輸入-5,-4,-3,-2,-1,0,1,2,3,4,5,計算機每次都把新輸入的值賦給變數“x”,並按“x”新獲得的值執行下面的語句。
輸出語句:
在該程序中,第3行和第4行中的PRINT語句是輸出語句。它的一般格式是:
同輸入語句一樣,表達式前也可以有“提示內容”。
賦值語句:
用來表明賦給某一個變數一個具體的確定值的語句。
除了輸入語句,在該程序中第2行的賦值語句也可以給變數提供初值。它的一般格式是:
賦值語句中的“=”叫做賦值號。
演算法語句的作用:
輸入語句的作用:輸入信息。
輸出語句的作用:輸出信息。
賦值語句的作用:先計算出賦值號右邊表達式的值,然後把這個值賦給賦值號左邊的變數,使該變數的值等於表達式的值。
高中數學必修3程條件循環知識點
條件語句:
演算法中的條件結構由條件語句來表達。
循環語句:
在一些演算法中,從否處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構。
反復執行的處理步驟稱為循環體。
條件語句的一般格式:
(IF-THEN-ELSE格式)
當計算機執行上述語句時,首先對IF後的條件進行判斷,如果條件符合,就執行THEN後的語句1,否則執行ELSE後的語句2。
循環結構的形式:
左圖,先判斷後執行,先判斷指定的條件是否為真,若條件為真,執行循環條件,條件為假時退出循環。
右圖,先執行後判斷,先執行循環體,然後再檢查條件是否成立,如果不成立就重復執行循環體,直到條件成立退出循環。
㈡ 高中數學知識結構框架圖
1.集合、簡易邏輯
理解集合、子集、補集、交集、並集的概念;
了解空集和全集的意義;
了解屬於、包含、相等關系的意義;
掌握有關的術語和符號,並會用它們正確表示一些簡單的集合。
理解邏輯聯結詞"或"、"且"、"非"的含義;
理解四種命題及其相互關系;掌握充要條件的意義。
2.函數
了解映射的概念,在此基礎上加深對函數概念的理解。
了解函數的單調性的概念,掌握判斷一些簡單函數的單調性的方法。
了解反函數的概念及互為反函數的函數圖象間的關系,會求一些簡單函數的反函數。
理解分數指數的概念,掌握有理指數冪的運算性質;掌握指數函數的概念、圖象和性質。
理解對數的概念,掌握對數的運算性質;掌握對數函數的概念、圖象和性質。
能夠運用函數的性質、指數函數、對數函數的性質解決某些簡單的實際問題。
3.不等式
理解不等式的性質及其證明。
掌握兩個(不擴展到三個)正數的算術平均數不小於它們的幾何平均數的定理,並會簡單的應用。
掌握分析法、綜合法、比較法證明簡單的不等式。
掌握二次不等式,簡單的絕對值不等式和簡單的分式不等式的解法。
理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。
4.三角函數(46課時)
理解任意角的概念、弧度的意義,能正確地進行弧度與角度的換算。
掌握任意角的正弦、餘弦、正切的定義,
並會利用單位圓中的三角函數線表示正弦、餘弦和正切。
了解任意角的餘切、正割、餘割的定義;
掌握同角三角函數的基本關系式:
掌握正弦、餘弦的誘導公式。
掌握兩角和與兩角差的正弦、餘弦、正切公式;
掌握二倍角的正弦、餘弦、正切公式;通過公式的推導,了解它們的內在聯系,從而培養邏輯推理能力。
能正確運用三角公式,進行簡單三角函數式的化簡、求值和恆等式證明(包括引出積化和差、和差化積、半形公式,但不要求記憶)。
了解周期函數與最小正周期的意義;
了解奇偶函數的意義;並通過它們的圖象理解正弦函數、餘弦函數、正切函數的性質;以及簡化這些函數圖象的繪制過程;
會用"五點法"畫正弦函數、餘弦函數和函數y=Asin(ωx+φ)的簡圖,理解A、ω、φ的物理意義。
會由已知三角函數值求角,並會用符號 arcsin x、arccos x、arctan x表示。
掌握正弦定理、餘弦定理,並能運用它們解斜三角形,能利用計算器解決解斜三角形的計算問題。
5.平面向量
理解向量的概念,掌握向量的幾何表示,
了解共線向量的概念。
掌握向量的加法與減法。
掌握實數與向量的積,理解兩個向量共線的充要條件。
了解平面向量的基本定理,
理解平面向量的坐標的概念,
掌握平面向量的坐標運算。
掌握平面向量的數量積及其幾何意義,
了解用平面向量的數量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件。
掌握平面兩點間的距離公式,
掌握線段的定比分點和中點坐標公式,並且能熟練運用;
掌握平移公式。
6.數列
理解數列的概念,
了解數列通項公式的意義;
了解遞推公式是給出數列的一種方法,並能根據遞推公式寫出數列的前幾項。
理解等差數列的概念,
掌握等差數列的通項公式與前 n 項和公式,並能解決簡單的實際問題。
理解等比數列的概念
掌握等比數列的通項公式與前 n 項和公式,並能解決簡單的實際問題。
7.直線和圓的方程
理解直線的傾斜角和斜率的概念,
掌握過兩點的直線的斜率公式,
掌握直線方程的點斜式、兩點式和直線方程的一般式,並能根據條件熟練地求出直線的方程。
掌握兩條直線平行與垂直的條件,
掌握兩條直線所成的角和點到直線的距離公式;
能夠根據直線的方程判斷兩條直線的位置關系。
會用二元一次不等式表示平面區域。
了解簡單的線性規劃問題,了解線性規劃的意義,並會簡單應用。
掌握圓的標准方程和一般方程,
了解參數方程的概念,理解圓的參數方程。
8.圓錐曲線方程
掌握橢圓的定義、標准方程和橢圓的簡單幾何性質;
理解橢圓的參數方程。
掌握雙曲線的定義、標准方程和雙曲線的簡單幾何性質。
掌握拋物線的定義、標准方程和拋物線的簡單幾何性質。
9.直線、平面、簡單幾何體
掌握平面的基本性質,會用斜二測的畫法畫水平放置的平面圖形的直觀圖;
能夠畫出空間兩條直線、直線和平面的各種位置關系的圖形,能夠根據圖形想像它們的位置關系。
掌握兩條直線平行與垂直的判定定理和性質定理;
掌握兩條直線所成的角和距離的概念(對於異面直線的距離,只要求會利用給出的公垂線計算距離)。
掌握直線和平面平行的判定定理和性質定理;
掌握直線和平面垂直的判定定理和性質定理;
掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念;
了解三垂線定理及其逆定理。
掌握兩個平面平行的判定定理和性質定理;
掌握二面角、二面角的平面角、兩個平行平面間的距離的概念;
掌握兩個平面垂直的判定定理和性質定理。
進一步熟悉反證法,會用反證法證明簡單的問題。
了解多面體的概念,了解凸多面體的概念。
了解稜柱的概念,掌握稜柱的性質,會畫直稜柱的直觀圖。
了解棱錐的概念,掌握正棱錐的性質,會畫正棱錐的直觀圖。
了解正多面體的概念,了解多面體的歐拉公式。
了解球的概念,掌握球的性質,掌握球的表面積和體積公式。
10.排列、組合、二項式定理
掌握分類計數原理與分步計數原理,並能用它們分析和解決一些簡單的應用問題。
理解排列的意義,掌握排列數計算公式,並能用它解決一些簡單的應用問題。
理解組合的意義,掌握組合數計算公式和組合數的性質,並能用它們解決一些簡單的應用問題。
掌握二項式定理和二項展開式的性質,並能用它們計算和證明一些簡單的問題。
11.概率
了解隨機事件的統計規律性和隨機事件概率的意義。
了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。
了解互斥事件的意義,會用互斥事件的概率加法公式計算一些事件的概率。
了解相互獨立事件的意義,會用相互獨立事件的概率乘法公式計算一些事件的概率。
會計算事件在 n 次獨立重復試驗中恰好發生 k 次的概率。
選修Ⅰ
1.統計
了解隨機抽樣、分層抽樣的意義,會用它們對簡單實際問題進行抽樣;
會用樣本頻率分布估計總體分布,
會利用樣本估計總體期望值和方差,體會如何從數據中提取信息並作出統計推斷。
2.導數
理解導數是平均變化率的極限;理解導數的幾何意義。
掌握函數 的導數公式,會求多項式函數的導數。
理解極大值、極小值、最大值、最小值的概念,
會用導數求多項式函數的單調區間、極大值、極小值及閉區間上的最大值和最小值。
選修Ⅱ
1.概率與統計
了解離散型隨機變數的意義,
會求出某些簡單的離散型隨機變數的分布列。
了解離散型隨機變數的期望值、方差的意義,會根據離散型隨機變數的分布列求出期望值、方差。
會用隨機抽樣、系統抽樣、分層抽樣等常用的抽樣方法從總體中抽取樣本。
會用樣本頻率分布估計總體分布。
了解正態分布的意義及主要性質。
了解線性回歸的方法和簡單應用。
2. 極限
理解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。
從數列和函數的變化趨勢了解數列極限和函數極限的概念。
掌握極限的四則運演算法則;會求某些數列與函數的極限。
了解連續的意義,藉助幾何直觀理解閉區間上連續函數有最大值和最小值的性質。
3.導數
了解導數概念的某些實際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);
掌握函數在一點處的導數的定義和導數的幾何意義;
理解導函數的概念。
熟記基本導數公式(c,xm(m為有理數), sin x, cos x, ex, ax, ln x,logax的導數);
掌握兩個函數和、差、積、商的求導法則;
了解復合函數的求導法則,會求某些簡單函數的導數。
會從幾何直觀了解可導函數的單調性與其導數的關系;了解可導函數在某點取得極值的必要條件和充分條件(導數在極值點兩側異號);會求一些實際問題(一般指單峰函數)的最大值和最小值。
4.數系的擴充--復數
理解復數的有關概念;
掌握復數的代數表示與幾何意義。
掌握復數代數形式的運演算法則,能進行復數代數形式的加、減、乘、除運算。
㈢ 演算法一般遵循什麼化的邏輯
演算法一般遵循順序結構、選擇結構、循環結構三種基本邏輯結構。
1、順序邏輯結構
順序結構是最簡單的演算法結構,框與框之間,語句與語句之間,都是按照它們出現的先後順序依次進行的,即它是由若干個依次執行的處理步驟組成的。
2、選擇邏輯結構
在一個演算法中,遇到條件判斷寬睜耐、演算法的流程根據條件是否成立有不同的流向,這種先根據條件作出判斷,再決定執行慎春哪一種操作的結構稱為選擇結構。
3、循環邏輯結構
需要重復執行同一操作的結構稱為循環結構,即從某處開始,按照一定條件反復執行某一處理步驟,反復執行的處理步驟稱為循環體。
(3)演算法的3種邏輯結構圖高一數學擴展閱讀
三種演算法基本邏輯結構的共同特點是:
1、只有一個入口和出口。
2、結構內的每一部分都有機會被執行到,也就是說對每一個框來說都應當有一條從入口到出口的路徑通過它,如圖中的A,沒有一條從入口到出口的路徑通過它,就是不符合要求的演算法結構。
3、早搭結構內不存在死循環,即無終止的循環,像右圖就是一個死循環,在流程圖中是不允許死循環的。
㈣ 高中數學必修三知識點總結是什麼
高中數學合集網路網盤下載
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
提取碼:1234
簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。
㈤ 程序框圖的高中數學演算法知識點總結
1、程序框圖基本概念:
(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規定的圖形、指向線及文字說明來准確、直觀地表示演算法的圖形。
一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
(二)構成程序框的圖形符號及其作用
學習這部分知識的時候,要掌握各個圖形的'形狀、作用及使用規則,畫程序框圖的規則如下:
1、使用標準的圖形符號。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。4、判斷框分兩大類,一類判斷框「是」與「否」兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。5、在圖形符號內描述的語言要非常簡練清楚。
(三)、演算法的三種基本邏輯結構:順序結構、條件結構、循環結構。
1、順序結構:順序結構是最簡單的演算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的,它是任何一個演算法都離不開的一種基本演算法結構。
順序結構在程序框圖中的體現就是用流程線將程序框自上而下地連接起來,按順序執行演算法步驟。如在示意圖中,A框和B框是依次執行的,只有在執行完A框指定的操作後,才能接著執行B框所指定的操作。
2、條件結構:
條件結構是指在演算法中通過對條件的判斷
根據條件是否成立而選擇不同流向的演算法結構。
條件P是否成立而選擇執行A框或B框。無論P條件是否成立,只能執行A框或B框之一,不可能同時執行A框和B框,也不可能A框、B框都不執行。一個判斷結構可以有多個判斷框。
3、循環結構:
在一些演算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。循環結構又稱重復結構,循環結構可細分為兩類:
(1)、一類是當型循環結構,如下左圖所示,它的功能是當給定的條件P成立時,執行A框,A框執行完畢後,再判斷條件P是否成立,如果仍然成立,再執行A框,如此反復執行A框,直到某一次條件P不成立為止,此時不再執行A框,離開循環結構。
(2)、另一類是直到型循環結構,如下右圖所示,它的功能是先執行,然後判斷給定的條件P是否成立,如果P仍然不成立,則繼續執行A框,直到某一次給定的條件P成立為止,此時不再執行A框,離開循環結構。
當型循環結構 直到型循環結構
注意:1循環結構要在某個條件下終止循環,這就需要條件結構來判斷。因此,循環結構中一定包含條件結構,但不允許「死循環」。2在循環結構中都有一個計數變數和累加變數。計數變數用於記錄循環次數,累加變數用於輸出結果。計數變數和累加變數一般是同步執行的,累加一次,計數一次。
㈥ 離散數學計算層次怎麼算出3層4層的! 說詳細點! 噴子勿噴!求大神回答!
離散數學2:基本概念
公式層次:單個的命題變項A是0層公式。
如果A是n層公式,B是m層公式,那麼¬A是n+1層公式;C=A∧B,C=A∨B,C=A→B,C=A↔B的層次是:max(n,m)+1。
比如(¬(p→¬q) ∧((r∨s) ↔¬q)的層次計算就是:
0 1 0 0 1
2 1 1
3 2
4
4層公式
設p1,p2,p3…pn是公式A中的全部與命題變項,那麼給它們各指定一個真值,這就是A的一個賦值/解釋。若使A=1,則是成真賦值,否則就是成假賦值。
所以含有n(n≥1)個命題變項的公式有2n個不同賦值。
真值表:把命題公式A在所有賦值下取值情況列成的表。
例:寫出(¬p∧q)→¬r的真值表,並求它的成真賦值和成假賦值。
(6)演算法的3種邏輯結構圖高一數學擴展閱讀:
學科內容
1.集合論部分:集合及其運算、二元關系與函數、自然數及自然數集、集合的基數
2.圖論部分:圖的基本概念、歐拉圖與哈密頓圖、樹、圖的矩陣表示、平面圖、圖著色、支配集、覆蓋集、獨立集與匹配、帶權圖及其應用
3.代數結構部分:代數系統的基本概念、半群與獨異點、群、環與域、格與布爾代數
4.組合數學部分:組合存在性定理、基本的計數公式、組合計數方法、組合計數定理
5.數理邏輯部分:命題邏輯、一階謂詞演算、消解原理
離散數學是傳統的邏輯學,集合論(包括函數),數論基礎,演算法設計,組合分析,離散概率,關系理論,圖論與樹,抽象代數(包括代數系統,群、環、域等),布爾代數,計算模型(語言與自動機)等匯集起來的一門綜合學科。離散數學的應用遍及現代科學技術的諸多領域。
離散數學也可以說是計算機科學的基礎核心學科,在離散數學中的有一個著名的典型例子-四色定理又稱四色猜想,這是世界近代三大數學難題之一。
它是在1852年,由英國的一名繪圖員弗南西斯·格思里提出的,他在進行地圖著色時,發現了一個現象,「每幅地圖都可以僅用四種顏色著色,並且共同邊界的國家都可以被著上不同的顏色」。
那麼這能否從數學上進行證明呢?100多年後的1976年,肯尼斯·阿佩爾(Kenneth Appel)和沃爾夫岡·哈肯(Wolfgang Haken)使用計算機輔助計算,用了1200個小時和100億次的判斷,終於證明了四色定理,轟動世界,這就是離散數學與計算機科學相互協作的結果。
離散數學可以看成是構築在數學和計算機科學之間的橋梁,因為離散數學既離不開集合論、圖論等數學知識,又和計算機科學中的資料庫理論、數據結構等相關,它可以引導人們進入計算機科學的思維領域,促進了計算機科學的發展。