㈠ 演算法的復雜度包括哪兩個部分
演算法的復雜度包括演算法的時間復雜度及空間復雜度。這兩個復雜度可以互相影響的。比如,可以採用「用空間換時間」的方法用多消耗內存空間來降低程序運行時間,也可以用「時間換空間」的方法,多消耗程序運行時間來降低內存佔用空間。
㈡ 如何分析演算法的復雜度
演算法的復雜性
演算法的復雜性是演算法效率度量,是評價演算法優劣的重要依據。一個演算法的復雜性的高低體現在運行該演算法所需要的計算機資源的多少上面,所需的資源越多,我們就說該演算法的復雜性越高;反之,所需的資源越低,則該演算法的復雜性越低。
計算機的資源,最重要的是時間和空間(即存儲器)資源。因而,演算法的復雜性有時間復雜性和空間復雜性之分。
不言而喻,對於任意給定的問題,設計出復雜性盡可能低的演算法是我們在設計演算法時追求的一個重要目標;另一方面,當給定的問題已有多種演算法時,選擇其中復雜性最低者,是我們在選用演算法適應遵循的一個重要准則。因此,演算法的復雜性分析對演算法的設計或選用有著重要的指導意義和實用價值。
簡言之,在演算法學習過程中,我們必須首先學會對演算法的分析,以確定或判斷演算法的優劣。
1.時間復雜性:
例1:設一程序段如下(為討論方便,每行前加一行號)
(1) for i:=1 to n do
(2) for j:=1 to n do
(3) x:=x+1
......
試問在程序運行中各步執行的次數各為多少?
解答:
行號 次數(頻度)
(1) n+1
(2) n*(n+1)
(3) n*n
可見,這段程序總的執行次數是:f(n)=2n2+2n+1。在這里,n可以表示問題的規模,當n趨向無窮大時,如果 f(n)的值很小,則演算法優。作為初學者,我們可以用f(n)的數量級O來粗略地判斷演算法的時間復雜性,如上例中的時間復雜性可粗略地表示為T(n)=O(n2)。
㈢ 如何計算一個演算法的時間復雜度
求解演算法的時間復雜度的具體步驟是:
1、找出演算法中的基本語句:
演算法中執行次數最多的那條語句就是基本語句,通常是最內層循環的循環體。
2、計算基本語句的執行次數的數量級:
(1)只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函數中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的系數。
(2)這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。
3、用大Ο記號表示演算法的時間性能:
(1)將基本語句執行次數的數量級放入大Ο記號中。
(2)如果演算法中包含嵌套的循環,則基本語句通常是最內層的循環體,如果演算法中包含並列的循環,則將並列循環的時間復雜度相加。例如:
for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++)
for(j=1;j<=n;j++)x++;
(3)第一個for循環的時間復雜度為Ο(n),第二個for循環的時間復雜度為Ο(n2),則整個演算法的時間復雜度為Ο(n+n2)=Ο(n2)。
㈣ 關於演算法復雜度
拜託,你自己不會去用計算機呀
㈤ A*演算法的時間復雜度是多少
從數學上定義,給定演算法A,如果存在函數F(n),當n=k時,F(k)表示演算法A在輸入規模為k的情況下的運行時間,則稱F(n)為演算法A的時間復雜度。這里首先要明確輸入規模的概念。關於輸入規模,不是很好下定義,非嚴格的講,輸入規模是指演算法A所接受輸入的自然獨立體的大小。例如,對於排序演算法來說,輸入規模一般就是待排序元素的個數,而對於求兩個同型方陣乘積的演算法,輸入規模可以看作是單個方陣的維數。為了簡單起見,總是假設演算法的輸入規模是用大於零的整數表示的,即n=1,2,3,……,k,…… 對於同一個演算法,每次執行的時間不僅取決於輸入規模,還取決於輸入的特性和具體的硬體環境在某次執行時的狀態。所以想要得到一個統一精確的F(n)是不可能的。為了解決這個問題,做以下兩個說明: 1.忽略硬體及環境因素,假設每次執行時硬體條件和環境條件是完全一致的。 2.對於輸入特性的差異,將從數學上進行精確分析並帶入函數解析式。
㈥ 各種演算法的時間復雜度
各種演算法的時間復雜度是不一樣的,每一種演算法都有它的優缺點,在使用的時候我們加以區別
㈦ 計算演算法復雜度
沒有什麼簡單的演算法吧,要根據程序代碼和各種情況綜合考慮,才能算出時間復雜度,包括最優,最差,平均
㈧ 演算法復雜度中,復雜度
求解演算法的時間復雜度的具體步驟是: 1、找出演算法中的基本語句:演算法中執行次數最多的那條語句就是基本語句,通常是最內層循環的循環體。 2、計算基本語句的執行次數的數量級:(1)只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函數中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的系數。(2)這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。 3、用大Ο記號表示演算法的時間性能:(1)將基本語句執行次數的數量級放入大Ο記號中。(2)如果演算法中包含嵌套的循環,則基本語句通常是最內層的循環體,如果演算法中包含並列的循環,則將並列循環的時間復雜度相加。例如: for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++) for(j=1;j<=n;j++)x++;(3)第一個for循環的時間復雜度為Ο(n),第二個for循環的時間復雜度為Ο(n2),則整個演算法的時間復雜度為Ο(n+n2)=Ο(n2)。常見的演算法時間復雜度由小到大依次為: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)Ο(1)表示基本語句的執行次數是一個常數,一般來說,只要演算法中不存在循環語句,其時間復雜度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)稱為多項式時間,而Ο(2n)和Ο(n!)稱為指數時間。計算機科學家普遍認為前者是有效演算法,把這類問題稱為P類問題,而把後者稱為NP問題。這只能基本的計算時間復雜度,具體的運行還會與硬體有關。
㈨ 時間復雜性的演算法復雜度
演算法復雜度分為時間復雜度和空間復雜度。其作用: 時間復雜度是指執行演算法所需要的計算工作量;而空間復雜度是指執行這個演算法所需要的內存空間。(演算法的復雜性體現在運行該演算法時的計算機所需資源的多少上,計算機資源最重要的是時間和空間(即寄存器)資源,因此復雜度分為時間和空間復雜度。)