A. 評價材料鑄造性能的主要指標是什麼
指金屬或合金是否適合鑄造的一些工藝性能,主要包括流動性、充型能力;收縮性鑄件凝固時體積收縮的能力;偏析 指化學成分不均性;吸氣性 在熔煉和澆注時吸收氣體的性能。
合金鑄造成型,獲得優質鑄件的能力。
鑄造性能:流動性、體收縮、線收縮、熱裂傾向。
B. 砂型鑄造的基本原理和性能指標
砂型鑄造還要分樹脂砂、煤粉砂、水玻璃砂等。
基本原理都是用粘結劑將砂子連接成型。每個的性能指標要求是不同的。
就樹脂砂來說:發氣量、抗拉強度、灼減量等是主要的指標。
C. 金屬材料的工藝性能有哪些
金屬材料的工藝性能有:鑄造性能、 鍛造性、 焊接性、切削加工性能、 熱處理工藝性能
1、 鑄造性能:金屬材料鑄造成形獲得優良鑄件的能力稱為鑄造性能,用流動性、收縮性和偏析來衡量。 被鑄物質多為原為固態,但加熱至液態的金屬,如銅、鐵、錫等,鑄模的材料可以是沙,金屬甚至陶瓷。南關菜市場東頭前兩年有兩個人把大量的鋁易拉罐盒熔化後倒進模子里鑄成大大小小的鋁鍋、鋁盆等.
2、 鍛造性:工業革命前鍛造是普遍的金屬加工工藝,馬蹄鐵、冷兵器、鎧甲均由各國的鐵匠手鍛造,金銀首飾加工、金屬包裝材料是鍛造與沖壓的總和。金屬材料用鍛壓加工方法成形的適應能力稱鍛造性。鍛造性主要取決於金屬材料的塑性和變形抗力。塑性越好,變形抗力越小,金屬的鍛造性能越好。高碳鋼不易鍛造,高速鋼更難。
3、 焊接性:金屬材料對焊接加工的適應性成為焊接性。也就是在一定的焊接工藝條件下,獲得優質焊接接頭的難易程度。鋼材的含碳量高低是焊接性能好壞的主要因素,含碳量和合金元素含量越高,焊接性能越差。
4、切削加工性能:切削加工性能一般用切削後的表面質量(用表面粗糙程度高低衡量)和道具壽命來表示。金屬材料具有適當的硬度和足夠的脆性時切削性良好。改變鋼的化學成分(如加入少量鉛、磷等元素)和進行適當的熱處理(如低碳鋼進行正火,高碳鋼進行球化退火)可以提高剛的切削加工性能。
5、 熱處理工藝性能:鋼的熱處理工藝性能主要考慮其淬透性,即鋼接受淬火的能力。,含錳、鉻、鎳等元素的合金鋼淬透性比較好,碳鋼的淬透性較差。鋁合金的熱處理要求較嚴,銅合金只有幾種可以熔熱處理強化。三國時諸葛亮帶兵打仗,請當時的著名工匠蒲元為他造了3000把鋼刀,蒲元用了的熱處理工藝,經過千錘百煉,使鋼刀削鐵如泥,從而大敗敵軍。
D. 金屬的鑄造工藝性能包括哪些
鋁合金鑄造工藝性能,通常理解為在充滿鑄型、結晶和冷卻過程中表現最為突出的那些性能的綜合。流動性、收縮性、氣密性、鑄造應力、吸氣性。鋁合金這些特性取決於合金的成分,但也與鑄造因素、合金加熱溫度、鑄型的復雜程度、澆冒口系統、澆口形狀等有關。 (1) 流動性流動性是指合金液體充填鑄型的能力。流動性的大小決定合金能否鑄造復雜的鑄件。在鋁合金中共晶合金的流動性最好。影響流動性的因素很多,主要是成分、溫度以及合金液體中存在金屬氧化物、金屬化合物及其他污染物的固相顆粒,但外在的根本因素為澆注溫度及澆注壓力(俗稱澆注壓頭)的高低。實際生產中,在合金已確定的情況下,除了強化熔煉工藝(精煉與除渣)外,還必須改善鑄型工藝性(砂模透氣性、金屬型模具排氣及溫度),並在不影響鑄件質量的前提下提高澆注溫度,保證合金的流動性。(2) 收縮性收縮性是鑄造鋁合金的主要特徵之一。一般講,合金從液體澆注到凝固,直至冷到室溫,共分為三個階段,分別為液態收縮、凝固收縮和固態收縮。合金的收縮性對鑄件質量有決定性的影響,它影響著鑄件的縮孔大小、應力的產生、裂紋的形成及尺寸的變化。通常鑄件收縮又分為體收縮和線收縮,在實際生產中一般應用線收縮來衡量合金的收縮性。鋁合金收縮大小,通常以百分數來表示,稱為收縮率。①體收縮體收縮包括液體收縮與凝固收縮。鑄造合金液從澆注到凝固,在最後凝固的地方會出現宏觀或顯微收縮,這種因收縮引起的宏觀縮孔肉眼可見,並分為集中縮孔和分散性縮孔。集中縮孔的孔徑大而集中,並分布在鑄件頂部或截面厚大的熱節處。分散性縮孔形貌分散而細小,大部分分布在鑄件軸心和熱節部位。顯微縮孔肉眼難以看到,顯微縮孔大部分分布在晶界下或樹枝晶的枝晶間。縮孔和疏鬆是鑄件的主要缺陷之一,產生的原因是液態收縮大於固態收縮。生產中發現,鑄造鋁合金凝固范圍越小,越易形成集中縮孔,凝固范圍越寬,越易形成分散性縮孔,因此,在設計中必須使鑄造鋁合金符合順序凝固原則,即鑄件在液態到凝固期間的體收縮應得到合金液的補充,是縮孔和疏鬆集中在鑄件外部冒口中。對易產生分散疏鬆的鋁合金鑄件,冒口設置數量比集中縮孔要多,並在易產生疏鬆處設置冷鐵,加大局部冷卻速度,使其同時或快速凝固。②線收縮線收縮大小將直接影響鑄件的質量。線收縮越大,鋁鑄件產生裂紋與應力的趨向也越大;冷卻後鑄件尺寸及形狀變化也越大。對於不同的鑄造鋁合金有不同的鑄造收縮率,即使同一合金,鑄件不同,收縮率也不同,在同一鑄件上,其長、寬、高的收縮率也不同。應根據具體情況而定。本篇文章來源於 「中國金屬加工在線」 轉載請以鏈接形式註明出處 網址: http://www.mw1950.com/html/200805/0509/20080509134931565.shtml
E. 鈦合金(TA、TC、TB)鑄造性能闡述
鈦及鈦合金鑄件鑄造生產工藝
鈦及鈦合金具有密度低,比強度高,耐腐蝕,線脹系數小,生物相溶性好等優異性能,在航空、航天、遠洋運輸、化工、冶金、醫療衛生等行業中都是不可缺少的結構材料。工業上最初應用的鈦及鈦合金製件都是變形件,隨著其用量的增多和應用范圍的擴大,變形反映出機械加工量大,材料利用率低,生產成本高等弊端,於是鑄造技術由此發展起來。鈦鑄造是比較經濟且又容易實現的近成形工藝。鈦及鈦合金在熔融狀態下具有高化學活性,要與常用的各種耐火材料發生化學反應,熔煉和鑄造成形難度很大,必須有其專用的造型材料和造型工藝以及專用的熔煉與鑄造設備。
一)熔煉工藝:
我國的鈦鑄造90% 以上熔煉與鑄造設備都採用真空自耗電極電弧凝殼爐加離心鑄造。坩堝採用水冷銅坩堝,鈦液的最大澆注量為500 kg。
自耗電極電弧熔煉法是以鈦或鈦合金製成的自耗電極為陰極,以水冷銅坩堝為陽極;大電流熔煉,鈦電極的熔化速度遠遠大於鈦的凝結速度,熔化了的電極以液滴形式進入坩堝,形成熔池;熔池表面被電弧加熱,始終呈液態,底部和坩堝接觸的四周受到循環水強製冷卻,產生自下而上的結晶。這種方法具有結構簡單、維持費用低、大型化容易等優點,缺點是澆注溫度難以調節和控制,一停弧後,金屬液必須在3~5秒內全部從坩堝倒出,否則溫度急劇下降,金屬液過熱度不高,使得液體流動性和補縮能力較差。自耗電極電弧熔煉對電極的質量要求很高,要求電極內部組織緻密。熔煉過程中危險性較大,稍微操作不慎將會出現電弧損壞坩堝,造成坩堝外壁強製冷卻的循環水進入坩堝,污染鈦液,水蒸氣損壞真空泵系統。
二)鑄造型腔工藝:
鈦合金鑄造的造型工藝主要有金屬型、機加工石墨型、金屬面層陶瓷型殼、氧化物陶瓷型殼。
1)金屬型
金屬型在鈦合金鑄造領域中,用作鑄型的金屬材料主要有銅、鋼、鑄鐵、鎢、鉬等,與石墨加工型一起統稱為硬模系統。由於存在著工藝上的分型等難點,這種方法很難製造出復雜形狀的鈦鑄件,而大多隻在特定的鑄件上使用。
2)石墨型
機加工石墨型強度高,退讓性不好,對液態鈦要產生激冷,常使鑄件表面產生裂紋和冷隔,生產成本高、生產周期長。石墨孔隙較大,容易吸潮,所以機加工石墨型使用前必須進行除油、除氣處理,否則鑄件表面氧化現象嚴重。鑄件尺寸比較大,壁比較厚(≥5mm),形狀簡單,所需數量只有一件或幾件。選擇機加工石墨型。
3)陶瓷型
(1)金屬面層陶瓷型殼採用難熔金屬鎢粉作為耐火材料,金屬鎢的熔點高,與鈦液接觸時化學穩定性好,但是鎢粉應具有較高的純度,雜質含量不能超過規定標准,否則將影響鈦鑄件的品質。鎢面層熔模型殼必需採用溶劑脫蠟,而且在特製的脫蠟槽中進行,對人體健康有很大的傷害,同時也污染環境。鎢面層型殼高溫焙燒必須在還原性氣氛下進行,脫蠟後沉積在型殼外貌上的模料灰分很難燒化,在澆注時很容易與液鈦反應,在鑄件外貌形成氣孔。塗料漿工藝性能不好,懸浮性差,塗料漿壽命短,保存困難,價格昂貴。
(2)氧化物陶瓷型殼是將惰性氧化物做為面層型殼耐火材料。各種氧化物材料按其對熔融鈦合金的化學穩定性由低到高排列的順序如下:SiO2、MgO、Al2O3、CaO、ZrO2、Y2O3、ThO2。ThO2由於具有放射性已基本不用。CaO容易吸潮,所以阻礙了它的應用。現在,用作熔模鑄造型殼面層和鄰面層的材料主要是Y2O3、ZrO2。
未經穩定化處理的ZrO2不能做為鑄鈦的造型材料,因為它會發生同素異形體轉變,常溫下為單斜晶體,高溫下為四方晶體,溫度更高則轉變為立方晶體,單斜晶體轉變為四方晶體時,伴隨著9%左右的體積變化,使型殼發生開裂。通常採取向ZrO2 中加入4%~8%的CaO,經高溫電熔或煅燒後就可以得到穩定的ZrO2 固溶體(也有用Y2O3穩定),工業上大多採用電熔ZrO2。
Y2O3 同ZrO2 一樣,必須經過高溫穩定化處理後才能用作鈦合金造型材料。Y2O3 陶瓷型殼具有熱導率低、強度高等優點,澆注出的鑄件表面質量好,但Y2O3價格比較昂貴,來源困難。
我國的鑄鈦工業發展比較快,近幾年來新增加了一些鑄鈦生產廠。目前,全國的鑄鈦生產廠、研究所已經將近20 個,新增的鈦鑄造廠也都將產品定位在鈦熔模精密鑄件上,陝西錦瀚稀貴金屬有限公司常年與哈爾濱工業大學、西安交通大學、西北工業大學進行技術交流合作,致力於鈦、鎳、鋯及其合金的精密鑄件生產,形成以精密鑄造為主、機加工石墨型為輔的生產模式。
隨著鈦及鈦合金鑄造技術的發展和日益成熟,加上熱等靜壓(HIP)技術的誕生和在鈦合金鑄件方面的成功應用,較好的解決了鑄件的質量問題,提高了鑄件的可靠性。從20世紀80年代以後,鈦及鈦合金鑄件在航空、航天及其他方面的應用每年以20%的速度遞增。鑄造工藝方面,目前已經由單件鑄造發展到幾件或幾十件零件組合成的大型整體鑄件。應用范圍已經從早期的受力不大的非關鍵靜止結構件發展到成為航空發動機中的構件組成部分,完全取代了一些變形鈦合金、鋁合金、鋼件。
隨著航空發動機對推重比和剛度要求的提高,要求其中的一些關鍵鈦合金構件做成大型復雜薄壁的整件精鑄件。一些先進的航空大型渦輪發動機風扇機匣、中介機匣、前機匣、壓縮機機匣等都開始使用鈦合金精鑄件。大型客機的導風管、隔熱屏、支架、框架、耳軸、支撐架、剎車殼體、等也都以鈦合金精鑄件替代原來的構件。
軍用飛機方面,鈦合金鑄件的使用也逐步在增加,如:支座、框架、支架、制動勾、機翼上受力物件、方向舵轉動裝置支架、變速裝置殼件、吊架支撐附件等,實踐證實了鈦合金鑄件在飛機上的應用是成功、可靠的。不僅如此,在生產成本上,由於使用了鈦合金鑄件,使飛機的某些機構的設計、加工、緊固、裝配等都變得比原來未使用鈦合金鑄件時的機構簡化了,從而大大降低了飛機的製造成本。鈦合金鑄件在航天領域中主要用於導彈、太空梭飛船、人造衛星。其應用部位主要為:導彈殼體、尾翼、舵翼及連接座等,太空梭和飛船支架、框架、支座、附件、殼體等,由於鈦合金鑄件具有高的剛性、輕的重量和光學玻璃相當的熱膨脹系數,也應用於人造衛星及其他光學儀器的托框、基座、連結架以及殼體等。
鈦及鈦合金鑄件在日常工業生產方面也有著廣泛的應用領域。由於鈦及鈦合金具有良好的耐腐蝕性能,是化工及其他耐腐蝕工業的不可替代的材料。廣泛應用於化工、造紙、石油、制鹼、冶金、農葯等工業。主要應用產品是以工業純鈦和鈦—鈀合金為材質的鑄造鈦泵、鈦風機,各種不同類型的閥門,如:截止閥、球閥、旋塞閥、閘閥、蝶閥、止回閥等。
隨著人們生活水平的提高和對健康質量要求的提升,鈦合金以其高的疲勞強度,和人體超強的親和力等諸多優點,也被越來越多的用在醫療衛生領域。如:鑄造鈦合金髖關節修復件、膝關節修復件、人體假肢、口腔修復等等。運動器械領域鈦合金精密鑄件的用量非常巨大,如:自行車配件,高爾夫球頭。尤其是鈦合金高爾夫球頭市場容量最為巨大,但鑄造工藝比較復雜。
目前,鈦及鈦合金鑄件的使用范圍還在擴展,更多的應用領域也在相繼研究,但還存在著一些問題:1.合金品種少、牌號少,基本上常用的鈦合金都是工業純鈦鑄件和TC4合金鑄件。2.鑄件應用范圍小,大部分鑄件都用在了石油化工行業(工業純鈦鑄件),航空、航天領域應用很少,致使我國鈦鑄造工業的工藝和技術水平難以提高。3.造型工藝普遍落後,大部分廠家都是用石墨型造型工藝(機加工石墨型和搗實石墨型),而熔模精密鑄造應用很少。鑄造出的鑄件表面比較粗糙。4.熔煉設備基本上都為真空自耗電極電弧凝殼爐,熔煉過程危險性較高,熔化金屬液過熱度不高,造成鑄件表面易產生流痕、冷隔等缺陷,薄壁零件成形困難。
為改善我國鈦鑄造工業生產的落後狀態,提高我國鑄鈦工業的整體工藝和技術水平,還需進行以下幾方面的研究:1.改進現有的造型工藝,研究新的粘結劑和造型材料,簡化工藝,縮短生產周期,降低生產成本。2.研究和發展新的熔煉和鑄造設備及其技術,提高金屬液的過熱度,改善和提高鑄造鈦液的流動性和充型補縮能力,為研製大型復雜薄壁整體精鑄件創造有利條件。3.進一步擴大計算機模擬凝固技術在鈦合金鑄造中的應用,以提高鑄件質量,減小鑄件的廢品率。4.研究和發展鈦合金鑄件的各種熱處理工藝和熱化學處理技術,以改善鈦合金鑄件的微觀組織結構,提高鑄件的力學性能。5.熔模鑄造只能生產中小型鑄件,應尋求一種生產更大型、更凈形、更高效鑄件的造型工藝,提高鈦合金鑄件的生產能力。
F. 合金的鑄造性能指標是指什麼
指是否適合鑄造的一些工藝性能,主要包括1流動性、2充型能力;3收縮性、鑄件凝固時體收縮;4吸氣性、即在熔煉和澆注時吸收氣體的性能。
G. 金屬材料的鑄造性能包括哪些特性
金屬材料的鑄造性包括:流動性、收縮性、偏析傾向等特性。
H. 衡量其鑄造性能有哪些指標
合金的鑄造性能
合金在鑄造過程中所呈現出的工藝性能,稱為鑄造性能。
一、合金的流動性:液態金屬的流動能力
1、 對鑄件質量的影響
1) 流動性好的合金,容易獲得形狀完整、尺寸精確、輪廓清晰的鑄件。
2) 流動性好的合金,容易使其中的氣體逸出及浮在液面上的夾雜物受到阻隔。
3) 流動性好的合金,能在液態合金在凝固收縮時及時的補縮。
2、 影響流動性的因素
1) 合金的成分的影響 共晶成分的結晶比亞共晶好
2) 澆注條件的影響 溫度越高,保持液態的時間越長,液態合金的充型能力越強。
3) 鑄型的影響 形狀越復雜、壁厚越小,則液態合金流動時的阻力越大。
二、合金的收縮性:鑄件在凝固和冷卻至室溫的進程中,其體積和尺寸減小的現象
三種收縮 液態收縮、凝固收縮、(體收縮) 固態收縮(線收縮) 。
1、 影響收縮性的因素
1) 合金成分的影響
2) 澆注溫度的影響
3) 鑄型的影響
2、 收縮性與鑄件質量的關系
1) 縮孔與縮松
2) 變形與開裂
四、常用合金的鑄造性能
1、 鑄鐵的鑄造性能
(1) 灰鑄鐵: 灰鑄鐵中碳的質量分數接近共晶成分,熔點較低,凝固溫度范圍小,流動好,可以澆注形狀復雜和壁厚較小的鑄件。其鑄造性能是各類鑄鐵中最好的,因此應用廣泛。
(2) 球墨鑄鐵: 中碳的質量分數也接近於共晶成分,但是由於鐵液出爐後要進行球化處理,因此澆注時的溫度較低,流動性較差,容易使鑄件產生冷隔、澆不到等缺陷。鑄造性能比灰鑄鐵差一些。
(3) 蠕墨鑄鐵: 是高碳低硫鐵液經蠕化處理得到的一種高強度鑄鐵。碳的質量分數接近於共晶成分,加之鐵液又經蠕化劑凈化,因此其流動性較好,接近於灰鑄鐵。
(4) 可鍛鑄鐵: 碳的質量分數較低,因此它的熔點較高,結晶時凝固溫度范圍較大,這就使其流動性較差,體收縮率較大。其鑄造性能比以上三種鑄鐵都差。
2、 碳鋼的鑄造性能
熔點高、流動性差、收縮率大,其鑄造性能不如鑄鐵。
3、 鋁合金的鑄造性能
應用最廣泛的鑄造鋁合金是鋁硅合金,其合金成分在共晶點附近,加之熔點較低,所以流動性能很好,可以鑄造出最小壁厚為 2.5mm、形狀很復雜的鑄件。
4、 銅合金的鑄造性能
鑄造銅合金有黃銅和青銅兩大類。加入硅、錳、鋁等合金元素的黃銅,稱為特殊黃銅。鑄造黃銅大多是特殊黃銅。特殊黃銅的凝固溫度范圍很小,因此流動性良好。但是,黃銅的收縮率較大,鑄年中容易產生縮孔。生產中常採用冒口進行補縮。
應用廣泛的錫青銅,其凝固溫度范圍很寬,流動性差,補縮比較困難,鑄件中容易產生縮孔,鑄件的氣密性較差。鋁青銅的凝固溫度范圍較小,流動性較好。但是鋁青銅容易氧化,收縮率也大。
I. 鑄造性能指標主要有哪一些影響它們的主要因素有哪一些
鑄造性能是指金屬材料能否用鑄造方法製成優良鑄件的性能,即可鑄性。鑄造性能主要取決於金屬材料熔化後金屬液體的流動性,冷卻時的收縮率和偏析傾向。化學成分、熔煉工藝、出爐溫度、澆注溫度等都會影響其性能。
化學成分中P、Mo、B、Ti的含量偏高,會促進碳化物與磷共晶生成。而碳化物和磷共晶是影響刀具磨損的要因素(微觀顯微硬度可達HV1000)。
(9)鑄造性能指標源碼擴展閱讀:
鑄造-熔煉金屬,製造鑄型,並將熔融金屬澆入鑄型,凝固後獲得具有一定形狀、尺寸和性能金屬零件毛坯的成型方法
鑄造是將金屬熔煉成符合一定要求的液體並澆進鑄型里,經冷卻凝固、清整處理後得到有預定形狀、尺寸和性能的鑄件的工藝過程。鑄造毛坯因近乎成形,而達到免機械加工或少量加工的目的降低了成本並在一定程度上減少了製作時間.鑄造是現代裝置製造工業的基礎工藝之一。