Ⅰ 求數學模型,各種模型;各種演算法
數學建模的十大演算法
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)
Ⅱ 線性規劃的發展
法國數學家J.- B.- J.傅里葉和C.瓦萊-普森分別於1832和1911年獨立地提出線性規劃的想法,但未引起注意。
1939年蘇聯數學家Л.В.康托羅維奇在《生產組織與計劃中的數學方法》一書中提出線性規劃問題,也未引起重視。
1947年美國數學家G.B.Dantzing提出求解線性規劃的單純形法,為這門學科奠定了基礎。
1947年美國數學家J.von諾伊曼提出對偶理論,開創了線性規劃的許多新的研究領域,擴大了它的應用范圍和解題能力。
1951年美國經濟學家T.C.庫普曼斯把線性規劃應用到經濟領域,為此與康托羅維奇一起獲1975年諾貝爾經濟學獎。
50年代後對線性規劃進行大量的理論研究,並涌現出一大批新的演算法。例如,1954年C.萊姆基提出對偶單純形法,1954年S.加斯和T.薩迪等人解決了線性規劃的靈敏度分析和參數規劃問題,1956年A.塔克提出互補鬆弛定理,1960年G.B.丹齊克和P.沃爾夫提出分解演算法等。
線性規劃的研究成果還直接推動了其他數學規劃問題包括整數規劃、隨機規劃和非線性規劃的演算法研究。由於數字電子計算機的發展,出現了許多線性規劃軟體,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解幾千個變數的線性規劃問題。
1979年蘇聯數學家L. G. Khachian提出解線性規劃問題的橢球演算法,並證明它是多項式時間演算法。
1984年美國貝爾電話實驗室的印度數學家N.卡馬卡提出解線性規劃問題的新的多項式時間演算法。用這種方法求解線性規劃問題在變數個數為5000時只要單純形法所用時間的1/50。現已形成線性規劃多項式演算法理論。50年代後線性規劃的應用范圍不斷擴大。 建立線性規劃模型的方法
Ⅲ 線性規劃模型具有哪些特徵
線性規劃問題的形式特徵,三個要素組成:
1、變數或決策變數;
2、目標函數;
3、約束條件。
求解線性規劃問題的基本方法是單純形法,已有單純形法的標准軟體,可在電子計算機上求解約束條件和決策變數數達 10000個以上的線性規劃問題。
為了提高解題速度,又有改進單純形法、對偶單純形法、原始對偶方法、分解演算法和各種多項式時間演算法。對於只有兩個變數的簡單的線性規劃問題,也可採用圖解法求解。
這種方法僅適用於只有兩個變數的線性規劃問題。它的特點是直觀而易於理解,但實用價值不大。通過圖解法求解可以理解線性規劃的一些基本概念。
(3)演算法模型線性規劃擴展閱讀:
線性規劃建立的數學模型具有以下特點:
1、每個模型都有若干個決策變數(x1,x2,x3……,xn),其中n為決策變數個數。決策變數的一組值表示一種方案,同時決策變數一般是非負的。
2、目標函數是決策變數的線性函數,根據具體問題可以是最大化(max)或最小化(min),二者統稱為最優化(opt)。
3、約束條件也是決策變數的線性函數。
當我們得到的數學模型的目標函數為線性函數,約束條件為線性等式或不等式時稱此數學模型為線性規劃模型。
參考資料來源:搜狗網路-線性規劃
Ⅳ 多目標線性規劃的常用求解演算法有哪些
多目標決策主要有以下幾種方法:
(1)化多為少法:將多目標問題化成只有一個或二個目標的問題,然後用簡單的決策方法求解,最常用的是線性加權和法。
(2)分層序列法:將所有目標按其重要性程度依次排序,先求出第一個最重要的目標的最優解,然後在保證前一目標最優解的前提下依次求下一目標的最優解,一直求到最後一個目標為止。
(3)直接求非劣解法:先求出一組非劣解,然後按事先確定好的評價標准從中找出一個滿意的解。
(4)目標規劃法:對於每一個目標都事先給定一個期望值,然後在滿足系統一定約束條件下,找出與目標期望值最近的解。
(5)多屬性效用法:各個目標均用表示效用程度大小的效用函數表示,通過效用函數構成多目標的綜合效用函數,以此來評價各個可行方案的優劣。
(6)層次分析法:把目標體系結構予以展開,求得目標與決策方案的計量關系。
(7)重排序法:把原來的不好比較的非劣解通過其他辦法使其排出優劣次序來。
(8)多目標群決策和多目標模糊決策等
Ⅳ 解線性規劃數學模型有哪些方法
模型建立:
從實際問題中建立數學模型一般有以下三個步驟;
1.根據影響所要達到目的的因素找到決策變數;
2.由決策變數和所在達到目的之間的函數關系確定目標函數;
3.由決策變數所受的限制條件確定決策變數所要滿足的約束條件。
線性規劃難題解法
所建立的數學模型具有以下特點:
1、每個模型都有若干個決策變數(x1,x2,x3……,xn),其中n為決策變數個數。決策變數的一組值表示一種方案,同時決策變數一般是非負的。
2、目標函數是決策變數的線性函數,根據具體問題可以是最大化或最小化,二者統稱為最優化。
3、約束條件也是決策變數的線性函數。
當我們得到的數學模型的目標函數為線性函數,約束條件為線性等式或不等式時稱此數學模型為線性規劃模型。
例:
生產安排模型:某工廠要安排生產Ⅰ、Ⅱ兩種產品,已知生產單位產品所需的設備台時及A、B兩種原材料的消耗,如表所示,表中右邊一列是每日設備能力及原材料供應的限量,該工廠生產一單位產品Ⅰ可獲利2元,生產一單位產品Ⅱ可獲利3元,問應如何安排生產,使其獲利最多?
解:
1、確定決策變數:設x1、x2分別為產品Ⅰ、Ⅱ的生產數量;
2、明確目標函數:獲利最大,即求2x1+3x2最大值;
3、所滿足的約束條件:
設備限制:x1+2x2≤8
原材料A限制:4x1≤16
原材料B限制:4x2≤12
基本要求:x1,x2≥0
用max代替最大值,s.t.(subject to 的簡寫)代替約束條件,則該模型可記為:
max z=2x1+3x2
s.t. x1+2x2≤8
4x1≤16
4x2≤12
x1,x2≥0
解法
求解線性規劃問題的基本方法是單純形法,已有單純形法的標准軟體,可在電子計算機上求解約束條件和決策變數數達 10000個以上的線性規劃問題。為了提高解題速度,又有改進單純形法、對偶單純形法、原始對偶方法、分解演算法和各種多項式時間演算法。對於只有兩個變數的簡單的線性規劃問題,也可採用圖解法求解。這種方法僅適用於只有兩個變數的線性規劃問題。它的特點是直觀而易於理解,但實用價值不大。通過圖解法求解可以理解線性規劃的一些基本概念。
Ⅵ 演算法設計 線性規劃 蠻力法 給出詳細設計過程
解:#include<iostream>
using namespace std;
//在此現行規劃列子:
//第一個約束方程的最大X1 max=4; Y1 max=4;
//第二個約束方程的最大X2 max=6 Y2 max=2;
//取X1,X2 的最小值 X=4+1,包括0
// Y1,Y2的最小值為y=2+1,包括0
//因此時間復雜度為 x*y=8
////////////////////////
int main()
{
int i,j,max=0;
for(i=0;i<=4;i++)
for(j=0;j<=2;j++)
{
if(max < 3*i+5*j)
{
if((i+j <=4) && (i+3*j<=6))
max=3*i+5*j;
}
}
cout<<max<<endl;
return 0;
}
Ⅶ 最優化問題的數學模型是什麼什麼叫線性規劃,什麼叫非線性規劃
數學模型可以是一個公式,也可以是圖表類的東西,也可以是一種演算法程序,並沒有明確的定義。
當目標函數和約束條件都是決策變數的線性函數時稱為線性規劃;否則稱為非線性規劃。
Ⅷ 畢業答辯問題 1,線性規劃在物流中有哪些具體應用 2,動態規劃的演算法模型
1電壓不穩2顯卡驅動有不兼容性的錯誤3顯示器有問題一般都是顯卡驅動問題換一個顯卡驅動試試看有時候並不是最新的顯卡驅動就是最好的